Criteria

Text:
Display:

Results

Viewing 181 to 210 of 110622
2017-10-08
Technical Paper
2017-01-2418
Hong Zhang, Zhuo Wang, Zhouzhensen Hong
Abstract The electric compound turbocharger(ECT) which integrates a high speed motor into a turbocharger rotor shaft can be used transiently to accelerate the turbocharger more quickly in response to an acceleration requirement. It can utilize the exhaust gas energy fully to improve the engine fuel efficiency and benefit for engine with lower emissions. The key technique of ECT is to solve the reliability problems when an electrical motor is integrated into a turbocharger shaft between the turbine and compressor wheels will increase the burden for the bearing support and affect the turbocharger shaft rotation characteristics. In order to know the dynamics behavior of higher load bearing system is explored for reliability, this paper focus on the nonlinear rotor dynamics characteristics of ECT rotor bearing system.
2017-10-08
Technical Paper
2017-01-2415
Valery Dunaevsky
Abstract The film thickness-roughness ratio Λ has been used since the mid-1960s as a simplified criterion for the lubrication conditions in rolling bearings. However, due to an assumed Gaussian distribution of the roughness height amplitudes of the functional surfaces of rolling bearings and other unsubstantiated assumptions regarding the mechanisms of contact interaction, concerns have arisen about the representability of Λ in terms of lubrication. In this study, a more objective Λ-type ratio that does not depend on the law of roughness height distribution and the peculiarities of contact mechanics is introduced and defined as Λz. The relevant range of the new Λ ratio is lower than that of its conventional counterpart, and it overlaps with contemporary theoretical and experimental results. The study exhibits unique profilometric data of the functional surfaces of the roller bearings, produced by the major bearing manufacturers.
2017-10-08
Technical Paper
2017-01-2424
Shemin Zhang, Huaping Li, Tao Chen, Nan Jiang, Xinzhen Tan, Limei Deng, Qingsong Xia, Paul Kapus, Mingtang Ma, Wei Li, Junqiang Zhang, Qingjun Ma, Yong Xia
Abstract In recent years, more attentions have been paid to stringent legislations on fuel consumption and emissions. Turbocharged downsized gasoline direct injection (DI) engines are playing an increasing important role in OEM’s powertrain strategies and engine product portfolio. Dongfeng Motor (DFM) has developed a new 1.0 liter 3-cylinder Turbocharged gasoline DI (TGDI) engine (hereinafter referred to as C10TD) to meet the requirements of China 4th stage fuel consumption regulations and the China 6 emission standards. In this paper, the concept of the C10TD engine is explained to meet the powerful performance (torque 190Nm/1500-4500rpm and power 95kW/5500rpm), excellent part-load BSFC and NVH targets to ensure the drivers could enjoy the powerful output in quiet and comfortable environment without concerns about the fuel cost and pollution.
2017-10-08
Technical Paper
2017-01-2423
Xiaoming Ye, Yan Fu, Wei Li, Yuze Jiang, Shixin Zhu
Abstract As the key components of internal combustion engine(ICE), the crankshaft main bearings are used to support the crankshaft and connecting rod mechanism whose rotary motion realizes the energy conversion from heat energy to mechanical power in cylinder. The lubrication performances and wear life of crankshaft main bearings directly affect ICE working efficiency and reliability. Therefore, it is very important to study the lubrication performances of crankshaft main bearings. In this paper, a 16V marine diesel engine was studied. Based on the AVL-Designer software platform, a dynamic model of crankshaft and connecting rod mechanism and a hydrodynamic lubrication model of crankshaft main bearing were built. The numerical analyses were carried out on the lubrication performances of crankshaft main bearings under different speed conditions.
2017-10-08
Technical Paper
2017-01-2422
Na Li, Fenlian Huang, Yuhua Bi, Yueqiang Xu, Lizhong Shen, Dewen Jia
Abstract The assembly of con rod bearing and crankpin is a key friction pair which offers an important guarantee for stable operation of diesel engine. Specific to the non-road 2-cylinder diesel engine developed independently and based on the theory of thermoelastohydrodynamic lubrication as well as multi-body dynamics, this paper establishes a multi-body dynamics model for con rod big end bearings of the 2D25 horizontal diesel engine and makes a research on the influence of bearing width, bearing clearance, and oil inlet position and diameter upon lubrication of con rod bearing, taking into consideration that of the surface appearance of bearing bush and the elastic deformation of bearing bush and axle journal upon the same. Research results show that bearing width and bearing clearance are the major factors that influence lubrication characteristics of con rod bearing while oil inlet position and diameter only have a small influence on such characteristics.
2017-10-08
Technical Paper
2017-01-2421
Dongkang Cheng, Xiaori Liu
Abstract With the enhancement of power density, the thermal load of internal combustion engine becomes an increasingly serious problem, the influence of heat load on the frictional power loss of piston ring is more prominent. A mixed lubrication model is established for the piston ring-cylinder liner system of a diesel engine, the influence of temperature change on the frictional power loss of piston ring-cylinder liner system is investigated. The maximum temperature ranges of the first ring, the second ring and the oil ring are 40 degrees Celsius independently, and the maximum temperature range of the cylinder liner is 20% of its temperature. The results show that: The temperature of cylinder liner has obviously influence on the oil film temperature, while the temperature of piston rings has little influence.
2017-10-08
Technical Paper
2017-01-2428
Peilin Dai, Ying Huang, Donghao Hao, Ting Zhang
Abstract The vehicle driveline suffers low frequency torsional vibration due to the abrupt change of input torque and torque fluctuation under variable frequency. This problem can be solved by model based control, so building a control oriented driveline model is extremely important. In this paper, an on-line recursive identification method is proposed for control oriented model and validated based on an electric car. First of all, the control oriented driveline model is simplified into a six-parameter model with double inertia. Secondly, based on stability analysis, motor torque and motor speed are chosen as input signal for on-line model identification. A recursive identification algorithm is designed and implemented based on Simulink. Meanwhile a detail model of the vehicle which considering driveline parameter variation is built based on ADAMS. Thirdly, on-line identification is conducted by using co-simulation of ADAMS and Simulink.
2017-10-08
Technical Paper
2017-01-2426
Zhiming Zhang, Weimin Wang, Jiangtao Wang, Jiming Zhang, Yuanda Chen, Wenlong Zhang, Guofang Yang, Fugui Fan, Wenxiang Zhang, Fengqin Huang, Xiangwang Li
Abstract In recent years, Turbo-charged GDI technology is more and more widely used, which can meet the high demand of the engine performance and efficiency, but the resulting reliability and NVH issues also need to be paid attention to [1]. Traditional NVH performance improvement is mostly based on the experience design and repeatable test, which lead to longer development period, high cost, and also ineffective results. NVH performance simulations play more important role in engine vibration and noise prediction along with the development of the simulation technology[2][3]. The force response analysis is usually used to evaluate the NVH performance of the engine structure under the standard excitation. However, dynamic analysis of the crank train, valve train, and piston can be carried out based on the AVL software family, also the vibration and airborne noise of whole engine can be predicted directly at different speed and load [4].
2017-10-08
Technical Paper
2017-01-2425
Ramit Verma, Ramdas R Ugale
Abstract On two wheelers, magneto/alternator generates either single/three phase AC power and Regulator Rectifier Unit (RRU) does regulated rectification to charge the battery. In order to face the requirements of 2-wheeler engine with respect to upcoming stringent regulations like electronic fuel injection (EFI), anti-lock braking system (ABS), automatic headlamp on (AHO) in emerging markets like India; vehicles demand more electrical power from batteries. This demands higher power from alternator and consequently from RRU. Requirement of higher output power presents challenges on regulator rectifier unit in terms of size, power dissipation management and reliability. In this paper, improved performance of MOSFET based RRU is discussed in comparison to Silicon Controlled Rectifier (SCR) based RRU. The motivation/benefits of MOSFET based design is described along with the thermal behavior and temperature coefficient performance of RRU with test results.
2017-10-08
Technical Paper
2017-01-2397
Zhan Gao, Lei Zhu, Xinyao Zou, Chunpeng Liu, Zhen Huang
Abstract Biodiesel is a potential alternative fuel which can meet the growing need for sustainable energy. Partially premixed compression ignition (PPCI) is an important low-temperature combustion strategy to reduce NOx and soot emission of diesel engines. To investigate partial premixing impact on particle formation in flames of biodiesel or biodiesel surrogates, an experimental study was performed to compare the soot morphology and nanostructure evolution in laminar co-flow methyl decanoate non-premixed flame (NPF) and partially premixed flame (PPF). The thermophoretic sampling technique was used to capture particles along flame centerlines. Soot morphology information and volume fraction were obtained from TEM analysis and nanostructure features were evaluated by HR-TEM. With primary equivalence ratio of 19, gas temperature of PPF is higher along flame centerline compared with NPF. The results show an initially stronger sooting tendency in PPF at lower positions.
2017-10-08
Technical Paper
2017-01-2395
Arjun Prakash, Allen Aradi, William Imoehl, Phil Armitage
The impact of fuel composition (ethanol and aromatic content) and injector design on particulate number generation was studied in a 1.0L displacement direct injection spark ignition engine. Two types of engine tests that mimic real-life vehicle operation were carried out using a matrix of eight fuels and two injectors. It was found that the DISI injector design had the biggest impact on the extent of particulate number generation. An injector prototype designed to meet Euro 6c specifications for PN (6*1011 particles/km) resulted in much lower PN values compared to those obtained using a production injector currently available in the market. The impact of fuel composition on PN was apparent only during engine operation with the production injector. Overall, qualitative trends were observed but no statistically significant differences were observed for the impact of ethanol (E10 fuel match-blended for aromatics and octane quality) and aromatic content (19-28%) variation.
2017-10-08
Technical Paper
2017-01-2398
Bei Liu, Xiaobei Cheng, Jialu Liu, Han Pu, Li Yi
Abstract Partially-premixed low-temperature combustion avoids the soot and NOx generation area on the Ф-T diagram to reduce both engine NOx and soot emissions. Compared with the HCCI combustion mode, partially-premixed combustion (PPC) has better combustion controllability. The purpose of controlling the combustion phase can be achieved by adjusting injection timing and strategy. Based on a 4 cylinder turbocharged diesel engine, this paper aims at investigating the influence of injection strategy to the engine combustion and emission formation under the condition of single injection and split injection PPC strategy respectively, in which the primary purpose focus on the emission characteristics of particles. Results show that the early-injection PPC formed by single injection can reduce the quantity, quality and geometric mean diameter (GMD) of particles obviously.
2017-10-08
Technical Paper
2017-01-2396
Fushui Liu, Yang Hua, Han Wu, Xu He, Ning Kang
Abstract Soot emission, known as PM (particulate matter), is becoming a big issue for GDI engines as the emission regulations being increasingly stricter. It is found that ethanol, as an oxygenated bio-fuel, can reduce the soot emission when added to gasoline. In order to fully understand the effect of ethanol on soot reducing, the soot characteristics of ethanol/gasoline blends were studied on laminar diffusion flames. In this experiment, the blending ratio of ethanol/gasoline was set as E0/20/40/60/80. Considering the carbon content decreasing due to ethanol addition, carbon mass flow rate was remained constant. The two-dimensional distributions of soot volume fraction were measured quantitatively by using two-color laser induced incandescence technique. The results showed that ethanol is able to decrease the soot significantly, but the effect of ethanol on soot reduction is weakened with the increasing ethanol ratio.
2017-10-08
Technical Paper
2017-01-2401
Elana Chapman, Pat Geng, Yaowei Zhao, Susan Zhang, JunJun Ma, Jianqiang Gong
Abstract The impact of gasoline composition on vehicle particulate emissions response has been widely investigated and documented. Correlation equations between fuel composition and particulate emissions have also been documented, e.g. Particulate Matter Index (PMI) and Particulate Evaluation Index (PEI). Vehicle PM/PN emissions correlate very well with these indices. In a previous paper, global assessment with PEI on fuel sooting tendency was presented [1]. This paper will continue the previous theme by the authors, and cover China gasoline in more detail. With air pollution an increasing concern, along with more stringent emission requirements in China, both OEMs and oil industries are facing new challenges. Emissions controls require a systematic approach on both fuels and vehicles. Chinese production vehicle particulate emissions for a range of PEI fuels are also presented.
2017-10-08
Technical Paper
2017-01-2402
Yoshinori Otsuki, Shigemi Tochino, Kenji Kondo, Kazuhiko Haruta
Abstract Fine particle emissions from engine exhaust have attracted attention because of concern of their higher deposition fraction in alveoli. Since it was observed that sizes of solid particles in exhaust of conventional internal combustion engine technologies are mainly distributed above 30 nm and the mainly irreproducible sensitivity to volatile particles can be reduced, the current solid particle number (PN) measurement methodology was targeted to PN emissions particles larger than 23 nm. The necessity of the measurement of particles smaller than 23 nm is now under discussion. It is also surmised that there is difference between emissions under regulatory defined test cycles and real driving conditions. Currently, implementation of further real driving emission regulations utilizing portable emissions measurement systems (PEMS) is in place for the EU and being actively discussed in other regions.
2017-10-08
Technical Paper
2017-01-2399
Jianyu Duan, Kai Sun, Lei Li
Abstract Particulate matter emissions have become a concern for the development of DISI engines. EGR has been extensively demonstrated as a beneficial technology to migrate knock performance, improve fuel economy and reduce NOX emissions. Recently, the effect of EGR on particulate matter emissions is attracting increased attention. This work investigates the effects of EGR on PN emissions with the variations of engine operating parameters and aims to understand the role of EGR in PN emissions for DISI engines. A 1.8liter turbocharged engine with cooled EGR is used for this study. The engine is operated at steady-state conditions with EGR under various operating parameters including injection timing, excess air ratio, and spark timing to characterize the particle number emissions. The results indicates that there is a high sensitivity of PN emissions to EGR with the variations of those parameters.
2017-10-08
Technical Paper
2017-01-2406
Wu Yang, Xiuting Yin, Zhang Song Zhan, Huixian Shen, Huibin Qing, Qingqiang Zeng, Liyun Kang
Abstract This work addresses the problem of fatigue strength prediction of crankshaft fillet rolling processes to improve its accuracy. It is empirical to usually consider the effect of fillet rolling process on crankshaft fatigue performance. The fatigue performance of rolling process is mainly determined by induced compressive residual stresses, increased hardness and reduced roughness. Because the first two factors are difficult to measure the arc surface of fillet rolled cranks, it is difficult to predict the enhanced rate of crankshaft rolled performance to baseline unrolled’s. In this work a prediction method of fatigue strength for ductile cast iron crankshafts rolling process is presented. This method indirectly predicts the effect of the increased hardness on fatigue performance by the resonant bending fatigue test and modelling of crankshaft fillet rolling dynamic for the induced compressive residual stress.
2017-10-08
Technical Paper
2017-01-2405
Christophe Chaillou, Alexandre Bouet, Arnaud Frobert, Florence Duffour
Abstract Fuels from crude oil are the main energy vector used in the worldwide transport sector. But conventional fuel and engine technologies are often criticized, especially Diesel engines with the recent “Diesel gate”. Engine and fuel co-research is one of the main leverage to reduce both CO2 footprint and criteria pollutants in the transport sector. Compression ignition engines with gasoline-like fuels are a promising way for both NOx and particulate emissions abatement while keeping lower tailpipe CO2 emissions from both combustion process, physical and chemical properties of the low RON gasoline. To introduce a new fuel/engine technology, investigation of pollutants and After-Treatment Systems (ATS) is mandatory. Previous work [1] already studied soot behavior to define the rules for the design of the Diesel Particulate Filter (DPF) when used with a low RON gasoline in a compression ignition engine.
2017-10-08
Technical Paper
2017-01-2403
Yanzhao An, R Vallinayagam, S Vedharaj, Jean-Baptiste Masurier, Alaaeldin Dawood, Mohammad Izadi Najafabadi, Bart Somers, Bengt Johansson
Abstract In-cylinder visualization, combustion stratification, and engine-out particulate matter (PM) emissions were investigated in an optical engine fueled with Haltermann straight-run naphtha fuel and corresponding surrogate fuel. The combustion mode was transited from homogeneous charge compression ignition (HCCI) to conventional compression ignition (CI) via partially premixed combustion (PPC). Single injection strategy with the change of start of injection (SOI) from early to late injections was employed. The high-speed color camera was used to capture the in-cylinder combustion images. The combustion stratification was analyzed based on the natural luminosity of the combustion images. The regulated emission of unburned hydrocarbon (UHC), carbon monoxide (CO) and nitrogen oxides (NOX) were measured to evaluate the combustion efficiency together with the in-cylinder rate of heat release.
2017-10-08
Technical Paper
2017-01-2404
Douglas Ball, David Lewis, David Moser, Sanket Nipunage
Abstract Federal Test Procedure (FTP) emissions were measured on a 2009 4 cylinder 2.4L Malibu PZEV vehicle with 10 and 30ppm sulfur fuel while varying the PGM (Platinum Group Metals) of the close-coupled and underfloor converters. Base CARB PH-III certification fuel was used. Three consecutive FTPs were used to measure the impact of fuel sulfur and catalyst PGM loading combinations. In general, reducing fuel sulfur and increasing catalyst PGM loadings, decrease FTP emissions. Increasing Pd concentrations can mitigate the impact of higher fuel sulfur concentrations. The results also suggest that a 50% reduction in PGM can be achieved with a reduction in fuel sulfur from 30 to 10 ppm. On average, NMHC, CO and NOx emissions were reduced by 12, 49 and 64%, respectively with the 10 ppm sulfur fuel. In addition, HC and NOx vehicle emission variability were reduced by 74 and 57% with the 10 ppm sulfur fuel.
2017-10-08
Technical Paper
2017-01-2409
Erbao Zhang, Yinchun Gong, Jun Deng, Zongjie Hu, Chuanqian Jiang, Zhijun Wu, Liguang Li
Abstract The work of this paper aimed at investigating the cyclic variations of argon power cycle engine with fuel of hydrogen at lean burn operating conditions. The engine had been modified based on a 0.402 L, single-cylinder diesel engine into spark ignition engine with a port fuel injection system. The influencing factors on the cyclic variations, such as ignition timing, engine speed and compression ratio, were tested in this study. In all tests, the throttle opened at 0%, and the excess oxygen coefficient was maintained at 2.3. The results showed that as the ignition timing retards, CoVPmax and CoV(dp/dφ)max of argon power cycle engine increased, while CoVIMEP decreased firstly and increased afterward. And there is an ignition timing to make the lowest CoVIMEP, which is not consistent with MBT.
2017-10-08
Technical Paper
2017-01-2410
Ji Gao, Tie Wang, Dandan Sun, Jing Qiao, Yizhuo Feng
Abstract As the explosion proof diesel engine (EPD) of underground trackless tyred vehicle dynamic mechanical device, due to its good dynamic and economic performance, the diesel has been widely applied. The flame arrester can prevent the exhaust system from tempering, but the increased resistance will seriously affect the performance of diesel. Through the comparison of the CFD-FLUENT fluid simulation on flow and pressure field, the results show that the corrugated flame arrester performs better on reducing the exhaust back pressure than flat flame arrester and ensures the explosion-proof effect. The bench test of explosion proof diesel engine on intake and exhaust system is conducted, analysing the effect of the exhaust resistance under different speeds of diesel engine on the power, economy and emission of TY4100QFB type diesel engines with equivalent flow area , different specifications of flat versus corrugated flame-arrester in the course of external characteristics.
2017-10-08
Technical Paper
2017-01-2407
Michael Bardon, Greg Pucher, David Gardiner, Javier Ariztegui, Roger Cracknell, Heather Hamje, Leonardo Pellegrini, David Rickeard
Abstract Low Temperature Combustion using compression ignition may provide high efficiency combined with low emissions of oxides of nitrogen and soot. This process is facilitated by fuels with lower cetane number than standard diesel fuel. Mixtures of gasoline and diesel (“dieseline”) may be one way of achieving this, but a practical concern is the flammability of the headspace vapours in the vehicle fuel tank. Gasoline is much more volatile than diesel so, at most ambient temperatures, the headspace vapours in the tank are too rich to burn. A gasoline/diesel mixture in a fuel tank therefore can result in a flammable headspace, particularly at cold ambient temperatures. A mathematical model is presented that predicts the flammability of the headspace vapours in a tank containing mixtures of gasoline and diesel fuel. Fourteen hydrocarbons and ethanol represent the volatile components. Heavier components are treated as non-volatile diluents in the liquid phase.
2017-10-08
Technical Paper
2017-01-2408
Lei Zhou, Hongxing Zhang, Zhenfeng Zhao, Fujun Zhang
Abstract The Opposed Piston Two-Stroke (OPTS) engine has many advantages on power density, fuel tolerance, fuel flexibility and package space. A type of self-balanced opposed-piston folded-crank train two-stroke engine for Unmanned Aerial Vehicle (UAV) was studied in this paper. AVL BOOST was used for the thermodynamic simulation. It was a quasi-steady, filling-and-emptying flow analysis -- no intake or exhaust dynamics were simulated. The results were validated against experimental data. The effects of high altitude environment on engine performance have been investigated. Moreover, the matching between the engine and turbocharger was designed and optimized for different altitude levels. The results indicated that, while the altitude is above 6000m, a multi-stage turbocharged engine system need to be considered and optimized for the UAV.
2017-10-08
Technical Paper
2017-01-2450
Chao Xu, Fuyuan Yang, Jinyu Zhang
Abstract Power-split configuration is highlighted as the most popular concept for full hybrid electric vehicles (HEV). However, the energy management and design of power-split heavy duty truck under Chinese driving conditions still need to be investigated. In this paper, the parametric design, a rule-based control strategy and an equivalent consumption minimization strategy (ECMS) for the power-split heavy duty truck are presented. Besides, the influence of a penalty factor also discussed under ECMS algorithm. Meanwhile, two different methods to search the engine operation point have been proposed and the reason of different economy performance is presented by using energy flow chart. And the simulation results show both fuel consumption can satisfy the second phase fuel consumption standard and the third phase fuel consumption standard which will be implemented in 2020, under C-WTVC (Chinese-World Transient Vehicle Cycle).
2017-10-08
Technical Paper
2017-01-2453
Shuang Liu, Lina Pan, Xin Jiang, Yujiao Wang, Kun Liu, Yang Xia
Abstract Quick drop battery system was the core components of the electric vehicles, the reliability and compatibility of quick drop battery system was directly related to the popularization and application of electric vehicles. In this article, a split type battery management system and a split type high voltage architecture was used to achieve better charging compatibility. Meanwhile the number of fast switching connector’s pin is reduced and the plug life was prolonged to more than 10000 times by using floating structure. For battery management system (BMS), the state of charge (SOC) estimation was based on dynamic voltage correction, and make estimation accuracy reach to less than 5%. Rotary slot limit and fast locking mechanism had been designed for the first time and the precision of battery system assembling could control within 3mm, hence the floating structure’s damage could be reduced and the mechanical life could be enhanced.
2017-10-08
Technical Paper
2017-01-2455
Vikram Chopra
Abstract This paper reports on the design of a synchronizer brake based on permanent magnets, capable of braking with an active zero-slip load. Eddy-current brakes are widely used in automation and transportation applications; however, their use is limited by the rotor speed. For low-speed and high-torque applications, designs based on permanent magnets are better suited. Zero-slip braking torque is increased by the use of permanent magnets but, consequently, so is the cogging torque. At first, the synchronizer brake was designed with 16 surface magnets on the rotor. However, in order to reduce the permanent magnet mass, the rotor was re-designed with half the number of surface magnets. This novel design helped lower cogging torque and fabrication costs. Simulation of the design, using the 3D transient with motion solver in commercial finite element software, showed promising results.
2017-10-08
Technical Paper
2017-01-2452
Kingsley Joel Berry, Abdrahamane Traore, Aravind Krishna, Pavankumar Gangadhar, Allan Taylor
This paper documents the electrical infrastructure design of a Hybrid Go Kart competition vehicle which includes a dual Fuel Cell power system, Ultra Capacitors for energy storage, and a dual AC induction motor capable of independent drive. The Kart was built primarily to compete in the 2009 Formula Zero international event. This paper emphasized the vehicle model and control strategy as a result of three (3) graduate student research projects. The vehicle was fabricated and tested but did not participate in the race competition since the race organization folded. The vehicle model was developed in Simulink to determine whether the fuel cell and ultra-capacitor combination will be sufficient for peak transient power requirement of 14 kW. The vehicle’s functional description and performance specifications are documented including the integration of the fuel cell power modules, energy storage system, power converters, and AC motor and motor controllers.
2017-10-08
Technical Paper
2017-01-2454
Yiqi Jia, Gangfeng Tan, Cenyi Liu, Shengguang Xiong, Zehao Yang, Xingmang Zheng
Abstract In these years, the advantages of using phase change material (PCM) in the thermal management of electric power battery has been wide spread. Because of the thermal conductivity of most phase change material (eg.wax) is low, many researchers choose to add high conductivity materials (such as black lead). However, the solid-liquid change material has large mass, poor flow-ability and corrosively. Therefore, it still stays on experiential stage. In this paper, the Thermal characteristics of power battery firstly be invested and the requirements of thermal management system also be discussed. Then a new PCM thermal management has been designed which uses pure water as liquid phase change material, adopts PCM with a reflux device for thermal management.
2017-10-08
Technical Paper
2017-01-2457
Rickard Arvidsson, Tomas McKelvey
Abstract A two-state forward dynamic programming algorithm is evaluated in a series hybrid drive-train application with the objective to minimize fuel consumption when look-ahead information is available. The states in the new method are battery state-of-charge and engine speed. The new method is compared to one-state dynamic programming optimization methods where the requested generator power is found such that the fuel consumption is minimized and engine speed is given by the optimum power-speed efficiency line. The other method compared is to run the engine at a given operating point where the system efficiency is highest, finding the combination of engine run requests over the drive-cycle that minimizes the fuel consumption. The work has included the engine torque and generator power as control signals and is evaluated in a full vehicle-simulation model based on the Volvo Car Corporation VSIM tool.
Viewing 181 to 210 of 110622