Criteria

Text:
Display:

Results

Viewing 181 to 210 of 109758
2017-03-28
Technical Paper
2017-01-1091
Todd Brewer, Xingfu Chen
Abstract Typically, modern automotive engine designs include separate cylinder heads and cylinder blocks and utilize a multilayer steel head gasket to seal the resulting joint. Cylinder head bolts are used to hold the joint together and the non-linear properties of head gasket provide capability to seal the movement within the joint, which is essential for engine durability and performance. There are three major failure modes for head gasket joint: fluid or gas leakage due to low sealing pressure, head gasket bead cracking due to high gap alternation and scrubbing/fretting due to pressure and temperature fluctuations causing lateral movement in the joint. During engine operation, the head gasket design should be robust enough to prevent all three failure modes and the resulting design must consider all three major failure modes to provide acceptable performance.
2017-03-28
Technical Paper
2017-01-1090
Praveen Kumar Tumu, KungHao Wang, Juhchin Yang, Selvakumar Palani, Balaji Srinivasan
Abstract In the shop floor, cracking issue was noticed during assembly of valve seat and valve guide in the engine cylinder head, especially near the valve seating area. This paper reveals a non- linear finite element methodology to verify the structural integrity of a cylinder head during valve seat and valve guide assembly press-in operation under the maximum material condition, i.e., smallest hole size on cylinder head for valve seat and guide and largest diameter of valve seat and guide. Material and geometrical nonlinearities, and contact are included in this method to replicate the actual seat and guide press-in operation which is being carried out in shop floor. The press-in force required for each valve seat and valve guide assembly is extracted from simulation results to find out the tonnage capacity of pressing machine for cylinder head assembly line. Stress and plastic deformation due to assembly load are the criteria checked against the respective material yield.
2017-03-28
Technical Paper
2017-01-1088
Katherine Randall, Cody Bradford, Jeremy Ross, Jeremy Church, Nolan Dickey, Adam Christian, Matthew Dunn
Abstract High frequency variations in crankcase pressure have been observed in Inline-four cylinder (I4) engines and an understanding of the causes, frequency and magnitude of these variations is helpful in the design and effective operation of various engine systems. This paper shows through a review and explanation of the physics related to engine operation followed by comparison to measured vehicle data, the relationship between crankcase volume throughout the engine cycle and the observed pressure fluctuations. It is demonstrated that for a known or proposed engine design, through knowledge of the key engine design parameters, the frequency and amplitude of the cyclic variation in crankcase pressure can be predicted and thus utilized in the design of other engine systems.
2017-03-28
Technical Paper
2017-01-1086
Cagri Sever, Todd Brewer, Scott Eeley, Xingfu Chen, Ruichen Jin, Emad Khalil, Michael Herr
Abstract For aluminum automotive cylinder head designs, one of the concerning failure mechanisms is thermo-mechanical fatigue from changes in engine operating conditions. After an engine is assembled, it goes through many different operating conditions such as cold start, through warm up, peak power, and intermediate cycles. Strain alternation from the variation in engine operation conditions change may cause thermo-mechanical fatigue (TMF) failure in combustion chamber and exhaust port. Cylinder heads having an integrated exhaust manifold are especially exposed to this failure mode due to the length and complexity of the exhaust gas passage. First a thermo-mechanical fatigue model is developed to simulate a known dynamometer/bench thermal cycle and the corresponding thermo-mechanical fatigue damage is quantified. Additionally, strain state of the cylinder head and its relation to thermo-mechanical fatigue are discussed. The bench test was used to verify the TMF analysis approach.
2017-03-28
Technical Paper
2017-01-1123
Jinyu Zhang, Yaodong Hu, Fuyuan Yang, Chao Xu
Abstract Engine torque fluctuation is a great threat to vehicle comfort and durability. Former researches tried to solve this problem by introducing active damping system, which means the motor is controlled to produce torque ripple with just the opposite phase to that of the engine. By this means, the torque fluctuation produced by the motor and the engine can be reduced. In this paper, a new method is raised. An attempt is proposed by changing the traditional structure of the motor, making it produce ripple torque by itself instead of controlling the motor. In this way a special used ISG (Integrated Starter Generator) motor for HEV (Hybrid Electrical Vehicles) is made to achieve active damping. In order to study the possibility, a simulation, which focus on the motor instead of the whole system, is developed and series-parallel configuration is used in this simulation. As for the motor that used in this paper, four kinds of motors have been investigated and compared.
2017-03-28
Technical Paper
2017-01-1121
Deb Bonnerjee, Djamel Bouzit, Javed Iqbal
Abstract Automobile customers are looking for higher performance and quieter comfortable rides. The driveline of a vehicle can be a substantial source of NVH issues. This paper provides an understanding of a driveline noise issue which can affect any variant of driveline architecture (FWD, AWD, RWD and 4X4). This metallic noise is mostly present during the take-off and appropriately termed as ting noise. This noise was not prevalent in the past. For higher fuel economy, OEMs started integrating several components for lighter subsystems. This in effect made the system more sensitive to the excitation. At present the issue is addressed by adding a ting washer in the interface of the wheel hub bearings and the halfshafts. This paper explains the physics behind the excitation and defines the parameters that influence the excitation. The halfshaft and the wheel hub are assembled with a specified hub nut torque.
2017-03-28
Technical Paper
2017-01-1104
William D. Dunham, Jinwoo Seok, Weitian Chen, Edward Dai, Ilya Kolmanovsky, Anouck Girard
Abstract The efficiency of power transmission through a Van Doorne type Continuously Variable Transmission (CVT) can be improved by allowing a small amount of relative slip between the engine and driveline side pulleys. However, excessive slip must be avoided to prevent transmission wear and damage. To enable fuel economy improvements without compromising drivability, a CVT control system must ensure accurate tracking of the gear ratio set-point while satisfying pointwise-in-time constraints on the slip, enforcing limits on the pulley forces, and counteracting driveline side and engine side disturbances. In this paper, the CVT control problem is approached from the perspective of Model Predictive Control (MPC). To develop an MPC controller, a low order nonlinear model of the CVT is established. This model is linearized at a selected operating point, and the resulting linear model is extended with extra states to ensure zero steady-state error when tracking constant set-points.
2017-03-28
Technical Paper
2017-01-1145
Eric De Hesselle, Mark Grozde, Raymond Adamski, Thomas Rolewicz, Mark Erazo
Abstract Hybrid electric vehicles are continuously challenged to meet cross attribute performance while minimizing energy usage and component cost in a very competitive automotive market. As electrified vehicles become more mainstream in the marketplace, hybrid customers are expecting more attribute refinement in combination with the enhanced fuel economy benefits. Minimizing fuel consumption, which tends to drive hybrid powertrain engines to operate under lugging type calibrations, traditionally challenge noise, vibration, and harshness (NVH) metrics. Balancing the design space to satisfy the cost metrics, energy efficiency, noise and vibration & drivability under the hybrid engine lugging conditions can be optimized through the use of multiple CAE tools. This paper describes how achieving NVH metrics can put undesirable boundaries on Powertrain Operation which could affect other performance attributes.
2017-03-28
Technical Paper
2017-01-1125
Victor Baumhardt, Valdinei Sczibor
Abstract Halfshafts are very important components from vehicle powertrain. They are the element responsible to transmit torque and rotation from transmission to wheels. Its most basic design consists of a solid bar with joints at each extreme. Depending of bar length, the natural frequency of first bending mode might have a modal alignment with engine second order, resulting in undesired noise on vehicle interior. Many design alternatives are available to overpass this particular situation, like adding dampers, use tube shafts or use link-shafts, however, all of them are cost affected. This study proposes an investigation to obtain an optimal profile for a solid shaft, pursuing the lowest possible frequency for the first bending mode by changing its diameter at specific regions. The study is divided in four main stages: initially, a modal analysis of a halfshaft is done at vehicle to determinate its natural frequency when assembled on vehicle.
2017-03-28
Technical Paper
2017-01-1140
Yang Xu, Yuji Fujii, Edward Dai, James McCallum, Gregory Pietron, Guang Wu, Hong Jiang
Abstract A transmission system model is developed at various complexities in order to capture the transient behaviors in drivability and fuel economy simulations. A large number of model parameters bring more degree of freedom to correlate with vehicular test data. However, in practice, it requires extensive time and effort to tune the parameters to satisfy the model performance requirements. Among the transmission model, a hydraulic clutch actuator plays a critical role in transient shift simulations. It is particularly difficult to tune the actuator model when it is over-parameterized. Therefore, it is of great importance to develop a hydraulic actuator model that is easy to adjust while retaining sufficient complexity for replicating realistic transient behaviors. This paper describes a systematic approach for reducing the hydraulic actuator model into a piecewise 1st order representation based on piston movement.
2017-03-28
Technical Paper
2017-01-0492
Mahendra Beera, Dinesh Pahuja, Arpit Kapila, Rajat Handa, Sandeep Raina
Abstract Plastic plays a major role in automotive interiors. Till now most of the Indian automobile industries are using plastics mainly to cover the bare sheet metal panels and to reduce the weight of the vehicle along with safety concerns. Eventually Indian customer requirement is changing towards luxury vehicles. Premium look and luxury feel of the vehicle plays an equal role along with fuel economy and cost. Interior cabin is the place where aesthetics and comfort is the key to attract customers. Door Trims are one of the major areas of interiors where one can be able to provide premium feeling to the customer by giving PVC skin and decorative inserts. This paper deals with different types of PVC skins and its properties based on process constraints, complexity of the inserts. Door trim inserts can be manufactured by various methods like adhesive pasting, thermo-compression molding and low pressure injection molding process etc.
2017-03-28
Technical Paper
2017-01-1301
Deepak A. Patil, Hrishikesh Buddhe
Abstract Frontal collisions account for majority of car accidents. Various measures have been taken by the automotive OEMs’ with regards to passive safety. Honeycomb meso-structural inserts in the front bumper have been suggested to enhance the energy absorption of the front structure which is favorable for passive safety. This paper presents the changes in energy absorption capacity of hexagonal honeycomb structures with varying cellular geometries; under frontal impact simulations. Honeycomb cellular metamaterial structure offers many distinct advantages over homogenous materials since their effective material properties depend on both, their constituent material properties and their cell geometric configurations. The effective static mechanical properties such as; the modulus of elasticity, modulus of rigidity and Poisson’s ratio of the honeycomb cellular meso-structures are controlled by variations in their cellular geometry.
2017-03-28
Technical Paper
2017-01-0914
Mengchao Zhang
Since diesel engines have higher thermal efficiency, larger power and better fuel economy than gasoline engines, diesel engines are widely used in vehicle, construction machinery and agricultural machinery. However, they emit more hazardous pollutants than gasoline engines, especially particulate emission, which has negative impact on human health and environment quality. In order to meet future increasingly stringent regulations for particulate emission, exhaust gas after-treatment technologies of diesel engines are essential. Particulate emissions from a heavy-duty diesel engine which meets the China national V emission regulation were studied, and the engine was equipped with/without diesel oxidation catalyst (DOC), catalyzed diesel particulate filter (CDPF) and selective catalytic reduction (SCR). The fuel used in this article is ultra low sulfur diesel fuel whose sulfur content is less than 10 ppm.
2017-03-28
Technical Paper
2017-01-1355
Paul H. DeMarois, Bill Pappas, William G. Ballard, Jeffrey R. Williams, Gregory West
Abstract Four full scale burn tests on aluminum body Ford F-150’s were conducted with four unique origins. The purpose of these burn tests was to determine if the origin of the fire could be accurately identified after the vehicle fires progressed to near complete burn (with near absence of the aluminum body panels). The points of origin for the four burn tests were: 1) Engine Compartment - driver’s side front of engine compartment, 2) Passenger Compartment - Instrument panel, driver’s side near the headlamp switch, 3) Passenger Compartment - passenger side rear seat, 4) Outside of Vehicle - passenger side front tire. Photographic, video, and temperature data was recorded to document the burn process from initiation to extinguishment. Post-fire analysis was conducted in an attempt to determine the origin of the fire based solely on the burn damage.
2017-03-28
Technical Paper
2017-01-1466
Claudia De La Torre, Ravi Tangirala, Michael Guerrero, Andreas Sprick
Abstract Studies in the EU and the USA found higher deformation and occupant injuries in frontal crashes when the vehicle was loaded outboard (frontal crashes with a small overlap). Due to that, in 2012 the IIHS began to evaluate the small overlap front crashworthiness in order to solve this problem.A set of small overlap tests were carried out at IDIADA’s (Institute of Applied Automotive Research ) passive safety laboratory and the importance of identifying the forces applied in each structural element involved in small overlap crash were determined. One of the most important structural elements in the small overlap test is the wheel. Its interaction in a small overlap crash can modify the vehicle interaction at the crash, which at the laboratory the interaction is with a barrier. That interaction has a big influence at the vehicle development and design strategy.
2017-03-28
Journal Article
2017-01-0618
Hanyang Zhuang, Volker Sick, Hao Chen
The interaction of fuel sprays and in-cylinder flow in direct-injection engines is expected to alter kinetic energy and integral length scales at least during portions of the engine cycle. High-speed Particle Image Velocimetry (PIV) was used in an optical four-valve, pent-roof spark-ignition direct-injection (SIDI) single-cylinder engine to quantify this effect. Two-dimensional velocity fields were measured with crank angle resolved time steps and a field-of-view to enable the determination of integral length scales through critical portions of the engine cycle. Non-firing motored engine tests were performed at 1300 RPM with and without fuel injection to quantify the impact that the fuel sprays have on the in-cylinder flow. The fluctuations of the engine flow were quantified with fuel injected in early intake and late compression strokes, representative of quasi-homogenous and stratified combustion strategies.
2017-03-28
Technical Paper
2017-01-1509
L. Daniel Metz
Abstract We examine the characteristics, properties and potential idealized delamination failure modes of tires in this work. Calculations regarding tire failure stresses during tire failure scenarios, as well as during normal operation, are made. The calculations, though idealized, indicate that large chassis loads can result from the idealized failures.
2017-03-28
Technical Paper
2017-01-0509
Jyotishman Ghosh, Andrea Tonoli, Nicola Amati
Abstract This paper presents a novel strategy for the control of the motor torques of a rear wheel drive electric vehicle with the objective of improving the lap time of the vehicle around a racetrack. The control strategy is based upon increasing the size of the friction circle by implementing torque vectoring and tire slip control. A two-level nested control strategy is used for the motor torque control. While the outer level is responsible for computing the desired corrective torque vectoring yaw moment, the inner level controls the motor torques to realize the desired corrective torque vectoring yaw moment while simultaneously controlling the wheel longitudinal slip. The performance of the developed controller is analyzed by simulating laps around a racetrack with a non-linear multi-body vehicle model and a professional human racing driver controller setting.
2017-03-28
Technical Paper
2017-01-1381
Satheesh Kumar Chandran, James Forbes, Carrie Bittick, Shimul Bhuva
Abstract There is a strong business case for automotive companies to improve by understanding what consumers want, like and dislike. Various aspects of ergonomics such as reach, visibility, usability, feel are dependent on measuring consumer’s ability, opinions and satisfaction. Rating scales (such as adjective, continuous, logarithmic, etc.) are used to measure these complex attitudes. It is essential the correct rating scale and appropriate analysis methods are used to capture these attitudes. Previous psychology research has been conducted on the performance of different rating scales. This ratings scale research focused on scales and their reliability and validity for various applications. This paper will summarize past research, discuss the use of rating scales specific to vehicle ergonomics, and analyze the results of an automotive interface study that correlates the seven-point adjective rating scale to the system usability score (SUS).
2017-03-28
Technical Paper
2017-01-1376
David H. Weir, Kevin Chao, R. Michael Van Auken
Abstract A class of driver attentional workload metrics has been developed for possible application to the measuring and monitoring of attentional workload and level of distraction in actual driving, as well as in the evaluation and comparison of in-vehicle human machine interface (HMI or DVI) devices. The metrics include driver/vehicle response and performance measures, driver control activity, and driver control models and parameters. They are the result of a multidisciplinary, experimental and analytical effort, applying control theory, manual control, and human factors principles and practices. Driving simulator and over-the-road experiments were used to develop, confirm, and demonstrate the use of the metrics in distracted driving situations. The visual-manual secondary tasks used in the study included navigation destination entry, radio tuning, critical tracking task, and a generic touch screen entry task.
2017-03-28
Technical Paper
2017-01-0613
James R. MacDonald, Claudia M. Fajardo, Mark Greene, David Reuss, Volker Sick
Abstract Developing a complete understanding of the structure and behavior of the near-wall region (NWR) in reciprocating, internal combustion (IC) engines and of its interaction with the core flow is needed to support the implementation of advanced combustion and engine operation strategies, as well as predictive computational models. The NWR in IC engines is fundamentally different from the canonical steady-state turbulent boundary layers (BL), whose structure, similarity and dynamics have been thoroughly documented in the technical literature. Motivated by this need, this paper presents results from the analysis of two-component velocity data measured with particle image velocimetry near the head of a single-cylinder, optical engine. The interaction between the NWR and the core flow was quantified via statistical moments and two-point velocity correlations, determined at multiple distances from the wall and piston positions.
2017-03-28
Technical Paper
2017-01-0612
Li Shen, Kwee-Yan Teh, Penghui Ge, Yusheng Wang, David L.S. Hung
Abstract Proper Orthogonal Decomposition (POD) is a useful statistical tool for analyzing the cycle-to-cycle variation of internal combustion engine in-cylinder flow field. Given a set of flow fields (also known as snapshots) recorded over multiple engine cycles, the POD analysis optimally decomposes the snapshots into a series of flow patterns (known as POD modes) and corresponding coefficients of successively maximum flow kinetic energy content. These POD results are therefore strongly dependent on the kinetic energy content of the individual snapshots, which may vary over a wide range. However, there is as yet no algorithm in the literature to define, detect, and then remove outlier snapshots from the dataset in a systematic manner to ensure reliable POD results.
2017-03-28
Technical Paper
2017-01-1079
Suresh Kumar Kandreegula, Sayak Mukherjee, Rahul Jain, Shivdayal Prasad, Kamal Rohilla
Abstract Flex Connectors are intended for mitigating the relative movement of exhaust system components along the axis of the system arising from the thermal expansion due to intermittent engine operation. Flex connectors must not be installed in locations, where they will be subjected to destructive vibration. Hence, the stiffness of the flex connector plays an important role, while designing or selecting the right design. It consists of a multi-ply bellows combined with an inside and an outside steel braid. The liner is included to reduce the temperature of the bellows and improve flow conditions. The braid is included for mechanical protection and to limit the possible extension of the joint. It has only axial translational motion.
2017-03-28
Technical Paper
2017-01-1081
Chongzhi Zhong, Tieqiang Fu, Chunbei Dai, Taiyu Zhang, Ke Wu, Wangwen Gu
Abstract In order to study the single cavity and double cavity canister work performance, the L/D, as well as the similarities and differences among the diameter of the adsorption mouth, purge mouth and air mouth have been studied. At the same time, the work performance of ORVR canister and common canister is also studied. The results demonstrate that the similar of L/D, efficient work ability and efficient adsorption rate of the double cavity canister is better than the single cavity canister. The bigger of L/D, the stronger work ability of the canister. However, the excessive increase of the L/D is not conducive to the canister desorption, instead resulting in the increase of RARCP. The adsorption mouth diameter of common canister is generally smaller or similar to the purge mouth, while for ORVR canister the adsorption mouth diameter is bigger than the purge mouth and similar to air mouth.
2017-03-28
Technical Paper
2017-01-1533
Kathleen DeMarco, James Stratton, Kevin Chinavare, Garry VanHouten
Abstract The introduction of Worldwide harmonized Light vehicles Test Procedures (WLTP) in Europe and increased Corporate Average Fuel Economy (CAFE) standards in the United States for fuel economy and emissions reductions are going to have a larger role in vehicle development. Two major ways to increase fuel economy and reduce emissions are by reducing mass and improving aerodynamics. In the wheel segment, these two possible means to improve fuel economy compete against each other. Most lightweight wheel designs are detrimental to aerodynamics and aerodynamic wheels are seen as unstylish and with a high mass penalty. One solution is through the use of composite wheel technology which replaces non-structural aluminum with lighter weight materials. This study used SAE J2263 and SAE J2264 procedures to establish baseline fuel economy numbers and to evaluate various mass, inertial and aerodynamic differences between wheel concepts.
2017-03-28
Technical Paper
2017-01-0414
Bin Li, Xiaobo Yang, James Yang, Yunqing Zhang, Zeyu Ma
In this paper, a detailed 3D tire model is first proposed which includes a rigid rim with thickness, different layers of discretized belt points and a number of tread blocks attached on the area formatted by the neighboring belt points. The parameters of the proposed 3D tire model can be divided into two parts: the stiffness and damping values which only involve the in-plane motion and the stiffness and damping values which involve the out-of-plane motion, i.e. the lateral direction. In this paper, the relations between the in-plane parameters of the 3D tire model and the 2D tire model are given. Based on this relation, it is shown that the 3D tire model can generate exactly the same prediction results as the 2D tire model for tire straight line driving dynamics.
2017-03-28
Technical Paper
2017-01-0504
Anthony Berejka, Dan Montoney, Dan Dispenza, Len Poveromo, Rick Galloway, Mark Driscoll, Marshall Cleland
Having demonstrated the feasibility of using X-rays derived from high current industrial electron beam accelerators to cure the matrices of carbon fiber composites and then scaled this up to cure large sized, non-structural automobile components, performance car hoods, the New York State Vehicle Composites Program had a chassis designed, a cured epoxy mold made and then the chassis matrix cured using X-rays with a formulated radiation responsive matrix material. The feasibility study showed how X-rays could cure through materials embedded within the composite layers, such as metal inserts that could be used for mechanical fastening without fracturing the composite. In producing X-ray cured hoods, the power consumption for X-ray curing was found to be more than 20% lower than that needed for autoclave curing the same sized hoods using conventional thermosetting pre-pregs. More significant was the time-to-cure.
2017-03-28
Technical Paper
2017-01-1083
Chawin Chantharasenawong
Abstract This study focuses on achieving a lower overall lap time at SAE Formula Student competition through a modification to the standard intake system. The lower lap time is achieved by widening the range of engine RPM which produces torque higher than 90% of the maximum value and lowering the engine RPM corresponding to the maximum torque. An intake system with ‘variable runner length’ is introduced to the 2015 racecar of KMUTT team. The values of intake lengths are determined from the wave equation with the goal of producing over 90% of the maximum torque of the baseline configuration over a range of engine RPM. Computer simulations are performed to determine the pressure at engine entry at various runner lengths. Finally, a prototype variable runner length intake system with linear motor actuators is constructed and installed on the racecar. Chassis dynamometer tests are performed to determine the engine torque for 3,000 – 10,500 RPM at all interested runner lengths.
2017-03-28
Technical Paper
2017-01-1128
Yuvraj Y. Gorwade, Anand S. Damami
Abstract To ensure a robust, reliable and durable product, predicting the useful life of aggregates at the concept stage is a very important aspect in the any product design. This requirement is very much necessary in today’s competitive environment, wherein the customer expectations are increasing and development time for reliable product is shrinking. Clutch is one of the important aggregate in an automobile having manual transmission. It acts like a fuse in the driveline system wherein its wear and tear cannot be avoidable. The performance of Clutch is correlated with its useful life. In this paper, a unique methodology is formulated for the prediction of beta life of clutch. Actual field data of over 3 to 4 years related with warranty claims, mode of failures, usage kilometers etc. has been collected on a typical utility vehicle platform which has been operating on roads of Indian subcontinent.
2017-03-28
Technical Paper
2017-01-0803
Christiane Behrendt, Alastair Smith
Injector cleanliness is well characterised in the literature as a key factor for maintained engine performance in modern diesel cars. Injector deposits have been shown to a reduce injector flow capacity and result in loss of full load power; however, deposit effects on fuel economy are less well characterised. A study was conducted with the aim of building understanding of diesel injector nozzle deposits on fuel economy. A series of tests have been run using a previously published chassis dynamometer test method. The test method was designed to evaluate injector deposit effects on performance under driving conditions more representative of real world driving than the high intensity test cycle of the industry standard, CEC DW10B engine test. A light duty Euro 5 certified vehicle was tested and performance degradation was compared with fuels with a keep-clean dose of a new fuel borne additive versus additive free and low additised fuels.
Viewing 181 to 210 of 109758