Refine Your Search

Search Results

Journal Article

Research on Measurement Method of Road Gradient and Altitude by On-Road Driving

2009-04-20
2009-01-1116
Exhaust emissions from a vehicle under road driving condition is affected by the control state of ECU (Engine Control Unit). This control state highly depends on the driving force of the vehicle. The driving force is nearly equal to the driving resistance, which is the sum of the acceleration resistance, the air resistance, the rolling resistance and the gradient resistance. Although it is essential to take an accurate measurement of the road gradient, it is quite difficult to evaluate the gradient resistance in testing on-road driving. In this study, the measurement methods of the road gradient and the altitude with GPS, gyro sensor and height sensor are reported. The road gradient under the on-road driving condition is evaluated by the combination of measuring the pitch angle with the gyro sensor and measuring the vehicle gradient with the two height sensors. Verifying of this method, the altitude of the driving test route is also evaluated.
Technical Paper

Application of Virtual SEA for the Prediction of Acoustic Performance of Cockpit

2009-04-20
2009-01-0767
Not only for the carmakers but also for the automotive parts suppliers, cost reduction and short development cycle are strongly required to survive in highly competitive market. The simulation models predicting acoustic performance of cockpit module at early design stage could be a part of time-saving and cost-effective solution for those demands. Via experimental, analytical, and virtual statistical energy analysis (SEA) approach, the simulation models of cockpit module predicting acoustic performance are developed and validated. Recently proposed virtual SEA using FE models from crash analysis are useful to reduce the ambiguity of SEA modeling which could make a big difference in the result. The SEA models simulate the transmission loss tests of a cockpit module attached with several kinds of acoustical treatments between two connected reverberation chambers.
Journal Article

Optimum Guide Position Design of a Cockpit Module for Decreasing the Permanent Deformation

2010-04-12
2010-01-0393
The noise of interior plastic parts has been one of the major driving factors in the design of automotive interior assemblies. This phenomenon is one of the major contributors to the perceived quality in a vehicle. The noise is caused by interior plastic parts and other parts as a result of permanent deformation. Traditionally, noise issues have been identified and rectified through extensive hardware testing. However, to reduce the product development cycle and minimize the number of costly hardware builds, hardware testing must rely on engineering analysis and upfront simulation in the design cycle. In this paper, an analytical study to reduce permanent deformation in a cockpit module is presented. The analytical investigation utilizes a novel and practical methodology, which is implemented through the software tools, ABAQUS and iSight, for the identification and minimization of permanent deformation.
Journal Article

Car-to-X Simulation Environment for Comprehensive Design Space Exploration Verification and Test

2010-04-12
2010-01-0451
A future car-to-x communication system has to fulfil a lot of different requirements concerning high performance and functionality that are given by the field of application. To be able to optimize the system architecture regarding these constraints an intensive architecture evaluation and investigation is necessary. Within this paper a simulative approach for comprehensive design space exploration, verification, and test of a car-to-x communication unit is presented. The proposed simulation environment allows for a flexible adaption to the test case by being able to interconnect an arbitrary number of simulators of different type and different granularity. As a novelty complete embedded car-to-x systems can be investigated by integrating several SystemC based architecture models into an environmental simulation and observing their behavior and interaction.
Technical Paper

A STUDY OF DIFFERENT EGR ROUTES ON A HEAVY DUTY STOICHIOMETRIC NATURAL GAS ENGINE

2009-09-13
2009-24-0096
Exhaust gas recirculation (EGR) is a suitable strategy to optimize heavy duty natural gas (NG) engines. EGR could be utilized to have high specific power, with low thermal stress, but also to increase engine efficiency. NG fuelling permits a large flexibility in EGR system design, due to very clean engine exhaust. In this paper, three types of EGR routes have been studied. The best set up, which can introduce the highest EGR quantities, to provide the best reduction of the thermal load at rated power, was found to be a cooled low pressure EGR route. However high low pressure route (HLPR) could give the possibility to increase engine efficiency by modulating the power output in the widest un-throttled range operation.
Technical Paper

Statistical Modeling of Fatigue Crack Growth in Wing Skin Fastener Holes

2010-04-12
2010-01-0202
Estimation and prediction of residual life and reliability are serious concerns in life cycle management for aging structures. Laboratory testing replicating fatigue loading for a typical military aircraft wing skin was undertaken. Specimens were tested until their fatigue life expended reached 100% of the component fatigue life. Then, scanning electron microscopy was used to quantify the size and location of fatigue cracks within the high stress regions of simulated fastener holes. Distributions for crack size, nearest neighbor distances, and spatial location were characterized statistically in order to estimate residual life and to provide input for life cycle management. Insights into crack initiation and growth are also provided.
Journal Article

Understanding Practical Limits to Heavy Truck Drag Reduction

2009-10-06
2009-01-2890
A heavy truck wind tunnel test program is currently underway at the Langley Full Scale Tunnel (LFST). Seven passive drag reducing device configurations have been evaluated on a heavy truck model with the objective of understanding the practical limits to drag reduction achievable on a modern tractor trailer through add-on devices. The configurations tested include side skirts of varying length, a full gap seal, and tapered rear panels. All configurations were evaluated over a nominal 15 degree yaw sweep to establish wind averaged drag coefficients over a broad speed range using SAE J1252. The tests were conducted by first quantifying the benefit of each individual treatment and finally looking at the combined benefit of an ideal fully treated vehicle. Results show a maximum achievable gain in wind averaged drag coefficient (65 mph) of about 31 percent for the modern conventional-cab tractor-trailer.
Journal Article

Simulation of Cooling Airflow and Surface Temperature of a Midsize Truck

2009-10-06
2009-01-2894
This paper presents a simulation of the cooling airflow and surface temperatures of a midsize truck. The simulation uses full detailed geometry of the truck. Performance of the under-hood cooling airflow is analyzed and potential design changes leading to better cooling airflow are highlighted. Surface temperature over certain under-hood part is studied. Possible optimizations using various material and configurations are proposed. It is shown that the presented simulation approach provides valuable information to evaluate cooling system and thermal protection performance. Fast design iterations can be achieved using this approach.
Journal Article

Fuel Consumption Track Tests for Tractor-Trailer Fuel Saving Technologies

2009-10-06
2009-01-2891
The objective of the project was to conduct controlled test-track studies of solutions for achieving higher fuel efficiency and lower greenhouse gas emissions in the trucking industry. Using vehicles from five Canadian fleets, technologies from 12 suppliers were chosen for testing, including aerodynamic devices and low rolling resistance tires. The participating fleets also decided to conduct tests for evaluating the impact on fuel consumption of vehicle speed, close-following between vehicles, and lifting trailer axles on unloaded B-trains. Other tests targeted comparisons between trans-container road-trains and van semi-trailers road-trains, between curtain-sided semi-trailers, trans-containers and van semi-trailers, and between tractors pulling logging semi-trailers loaded with tree-length wood and short wood. The impact of a heavy-duty bumper on fuel consumption and the influence of B5 biodiesel blend on fuel consumption were also assessed.
Journal Article

Technology Breakthrough Achieves Objectives for SAE Preload Targets in Heavy Duty Wheel Ends

2009-10-06
2009-01-2887
Patents granted recently to Mr. Rode have changed the industry capability to adjust and verify wheel-end bearings on trucks. Until now it was believed1 that there was nothing available to confirm or verify the most desirable settings of preload on these bearings. The new, breakthrough invention is a tool and spindle-locking nut that permit quick and accurate wheel bearing adjustment by utilizing direct reading force measurement. Bearings can be set to either SAE recommended preloads or specific endplay settings. The author has been working on bearing adjustment methods for industrial applications for over forty years, and considers these inventions to be his most important breakthrough for solving this elusive bearing adjustment problem. Consistent wheel bearing preload adjustment was not possible before, even though it was widely known to achieve the best wheel performance as noted in SAE specification J2535 and re-affirmed in 2006 by the SAE Truck and Bus Wheel Subcommittee.
Technical Paper

Tribological Evaluation of the Aviation Kerosene for Use in CI Engines

2009-11-02
2009-01-2804
To reduce the fuel related logistic burden, NATO Armed Forces are advancing the use of a single fuel for both aircraft and ground equipment. To this end, F-34 is replacing distillate diesel fuel in many applications. Yet, unacceptable wear due to poor lubricity was illustrated by tests conducted with kerosene on High Frequency Reciprocating Rig. Therefore, HFRR tests were performed with fatty acid methyl esters of sunflower, palm, cotton-seed, tobacco-seed, olive, rape-seed and used frying oils, at volume concentrations from 0.05% to 0.6%. This study showed that the biodiesels used, produced a significant decrease in the wear scar diameter at concentrations of 0.2% to 0.4 %. Biodiesels derived from non-polyunsaturated oils, such as palm and olive gave better lubrication at certain concentrations.
Technical Paper

Heavy Duty Off-Road Truck Exhaust System Design

2009-10-06
2009-01-2853
An important segment of power system design often left to the Original Equipment Manufacturer (OEM) is the engine exhaust system. The requirement of exhaust after treatment has increased the importance of exhaust systems to be impermeable and still retain their physical flexibility. To achieve the necessary flexibility, OEMs will often choose to incorporate an available expansion joint(s) into the exhaust system. Often, conversations with expansion joint suppliers result in the OEM having to supply vital information about the application or a vehicle to record acceleration and vibration information. Unfortunately, the cost of building low volume vehicles does not always afford the OEM with enough resources to develop a custom expansion joint for the exhaust system. As a result, it is important to understand what the proper inputs are, make a sound engineering judgment as to what the worst case magnitude may be and provide that information to different suppliers.
Technical Paper

The Lubricant Contribution to Improved Fuel Economy in Heavy Duty Diesel Engines

2009-10-06
2009-01-2856
Fuel economy of internal combustion engines played an important role for engine designers for decades. For heavy duty diesel engines, over the last 10 to 15 years however, fuel economy has in some cases been sacrificed for exhaust gas emission optimizations. Now that the industry seems to have reached the point of diminishing returns in the area of reducing diesel exhaust gas emissions, the focus is back on fuel economy. This paper addresses the impact that diesel engine lubricants can have on improving fuel economy. The evaluations discussed in this paper are based on fuel economy measurements in a standardized laboratory engine test.
Technical Paper

Aeroelastic Design of a Joined-Wing UAV

2009-11-10
2009-01-3150
Aim of this study is the development of an integrated methodology able to support the structural design of an UAV demonstrator, having a joined-wing configuration and a high structural flexibility. HAPD (High Altitude Performance Demonstrator) is an UAV multi-mission, very light vehicle under development at CIRA, the Italian Aerospace Research Centre. HAPD structure is redundant as regards constraints, so the internal forces depend upon the stiffness distribution. In addition the evaluation of flight loads has to be performed without neglecting the flexibility of the structure. Because of the extreme unconventionality of the configuration the design of the primary structures has been widely affected by aeroelastic analyses.
Technical Paper

Quantifying the Fuel Consumption Penalties for an Operational Contrail Avoidance System

2009-11-10
2009-01-3151
Recent work has shown that when an aircraft encounters ambient ice-supersaturated conditions (where contrails may form and persist), it may be possible to avoid contrail formation by shifting cruise altitude up or down 2000 feet. If an aircraft's cruise altitude is shifted from the optimal profile during a portion of the mission, fuel consumption increases. Because on average approximately 20% of distance flown by commercial airliners is through ice-supersaturated regions, this study quantifies the fuel burn penalties for the notional scenario of flying the same fraction of cruise at altitude displacements of +2000, -2000, and -4000 ft. Present aircraft performance data was used to generate accurate fuel burn penalty estimates. This study finds that the net penalties for existing aircraft to fly contrail avoidance shifts vary between 0.2% and 0.7% increase in block fuel consumption.
Technical Paper

Torino Piemonte Aerospace (TPA) Project - Strategic Planning Model for SMEs

2009-11-10
2009-01-3153
Torino Piemonte Aerospace project (TPA) implemented a scientific, strategic planning method that simultaneously supports selected aerospace Piemonte Region (located in North-Western Italy) SMEs in their internationalisation process and offers the world aerospace community a competitive Supply Chain for professional procurement and for world-class partners and suppliers identification. Strategic Planning Framework adopted by TPA is a disciplinary tool which measured the competitive strength of the Piemonte aerospace cluster (TPA companies) and analyzed the external environment (market trends, business models, strategic assets). Within the limits of Competitive Positioning analysis, TPA Team performed the selection of the 66 top class aerospace and defence companies able to match buyers' needs and interact with international markets.
Journal Article

Managing Aircraft Simulation Requirements with Content-Based Image Retrieval

2009-11-10
2009-01-3149
Requirements analysis for aircraft simulators is often driven by photographs and videos of the actual aircraft. An engineer may gather and organize hundreds or even thousands of source photos of various instruments and devices unique to the aircraft. Managing all of this source information and referencing it to generate software requirements can be challenging and time-consuming. This paper explores Content Based Image Retrieval (CBIR) techniques to automatically process and search those images to generate basic requirements and to facilitate reuse. An unsupervised clustering algorithm groups source images based on minimal user input. Images processed in this way can also be queried by image similarity, thereby allowing project managers to find common source material among projects. The effectiveness of these techniques is demonstrated on an example cockpit.
Journal Article

Evaluation of the Use of a Head Worn Display (HWD) for Flight Support in the Commercial Flight Deck

2009-11-10
2009-01-3144
This study compared the performance of pilots flying a series of approach and landings under each of three conditions: using standard 737-NG flight deck displays only, using those displays with an optical head up display (HUD), and using those displays with a head worn display (HWD) depicting the same symbology as the HUD. Display condition had no effect on pilots' normal landing flight profiles or successful avoidance of a runway incursion. However, pilots reported decreased situation awareness and increased perceived workload when using the HWD as compared to the other two conditions. Pilot comments suggested that the poorer ratings for HWD were attributed to physical characteristics of the hardware and noticeable head-tracking latency. The results indicate that while the HWD technology still needs more refinement, the near-to-eye display concept is a viable alternative to a HUD.
Technical Paper

MIL-STD-1553 Physical Layer for Time-Triggered Networks

2009-11-10
2009-01-3147
Time Triggered networking technologies such as TTP (Time Triggered Protocol) are beginning to be used in critical aerospace applications such as flight controls. While TTP provides stringent specifications for determinism and fault tolerance, it does not define a physical layer. TTP's “de facto” physical layer, RS-485, includes shortcomings in a number of areas. These include a relatively low minimum transmitter voltage, low receiver threshold, along with a lack of specificity in a number of areas. The latter include bus signal levels, transmitter zero-crossing distortion and receiver zero-crossing tolerance, isolation method, terminal output noise, common mode and noise rejection, and input impedance. MIL-STD-1553, which has been deployed in flight and mission critical military applications for decades, defines a highly proven and robust physical layer. This paper presents MIL-STD-1553's physical layer as a candidate for use with TTP.
Technical Paper

Photometric and Colorimetric Measurement Procedures for Airborne Electronic Flat Panel Displays — SAE ARP 4260

2009-11-10
2009-01-3143
SAE ARP 4260 Photometric and Colorimetric Measurement Procedures for Airborne Electronic Flat Panel Displays [1] has recently been revised. This new revision reaffirms that ARP 4260 is pertinent to the aviation industry, changes the content to keep up with the state of the art, and adds clarification where needed. ARP 4260 contains methods used to measure the optical performance of airborne electronic flat panel display systems and is referenced in SAE ARP 4256, Design Objectives for Liquid Crystal Displays for Part 25 (Transport) Aircraft [2] and in SAE AS 8034, Minimum Performance Standard for Airborne Multipurpose Electronic Displays [3].
X