Refine Your Search

Search Results

White Paper


The exponential increase in the number of aircraft and air travelers has triggered new innovations aimed to make airline services more reliable and consumer friendly. Quick and efficient maintenance actions with minimum downtime are the need of the hour. Another major challenge is ensuring maintenance personnel are trained effectively; technology like augmented reality and Virtual Maintenance Trainers (VMTs) may provide safe and efficient training in lieu of live, instructor-led arrangements. And while traditional User/Maintenance Manuals provide useful information when dealing with simple machines, when dealing with complex systems of systems and miniaturized technologies, like unmanned aerial vehicles (UAVs), new technologies like augmented reality can rapidly and effectively support the maintenance operations.
White Paper

Innovative Assembly Systems for the Aerospace Industry

The aerospace industry is facing new challenges to meet burgeoning customer demand. An unprecedented number of orders for commercial aircraft is forcing aerospace manufacturing to make gains in efficiency throughout aircraft production and operation. However, current manufacturing systems are using technologies and production methods unsuited to a future dynamic market. To ensure its profitability, the aerospace industry must seize the opportunity to innovate and readdress approaches to manufacturing. This whitepaper looks at four advanced manufacturing (AM) solutions designed to improve assembly process efficiency, automation, and accuracy.
White Paper

Studies into Additive Manufacturing for In-Space Manufacturing

NASA has embarked on an ambitious program to integrate additive manufacturing techniques and to develop processes for the microgravity environment. The most recent example of this program is the successful launch and deployment of the first 3D printer on the International Space Station. In this one-year effort, students were required to meet a series of milestones to design, manufacture, and test their ideas in close cooperation with members of the NASA Exploration Augmentation Module (EAM) concept team.The participants in this project were tasked with thinking of new solutions using AM that would simultaneously be recyclable with minimal loss in mechanical properties but also have the capacity for high mechanical properties. Working in interdisciplinary teams, the participant teams investigated the use of recycled materials, characterization, testing, modeling, and tool development.
White Paper

The Use of Imaging for Powder Metal Characterization and Contamination Identification

As AM technologies are being used with higher frequencywithin the automotive and aerospace industries, the interest in powder characterization and contaminant identification is growing—especially for suppliers looking to gain entry into these highly regulated industries. Standards for powder materials and methods used for aerospace applications are still be developed, and regulatory agencies such as the Federal Aviation Administration have been requesting that standards be developed as guidance for the industry. Methods such as CCSEM and HLS could be viable options for suppliers needing to adhere to a powder specification by demonstrating compliance. Solutions exist to integrate such methods into a production environment as exemplified by RJ Lee Group.
White Paper

Advances in UAV Applications and Propulsion Technologies Drive the Development of UAV Propulsion Standards

The number of small unmanned aerial vehicles (UAVs) used for private and commercial applications is growing exponentially, beyond the domain of hobby enthusiasts. However, standards development has not been keeping up with the applications and technologies now available. The advent of inexpensive battery-powered quadcopters as stable aerial photography and remote-viewing platforms has expanded the utility of these systems into commercial and private applications for inspection and surveillance. With drone-delivered packages on the horizon, the potential for expansion will be even higher. These developments need to be incorporated into standards being produced for UAVs and propulsion systems.
Tech Insights

Balance of Plant: Integrating PEM Fuel Cells into Aircraft

While all-electric aircraft remain at the bleeding edge of the aviation industry, incorporating technologies like proton exchange membrane fuel cells into existing aircraft can result in considerable auxiliary capability with low environmental impact. However, proper consideration must be given to supporting systems to achieve a reliable balance of plant-especially when those systems interface with existing aircraft architectures. The scope of the BoP is to manage and condition the reactant flows to and from the fuel-cell module and to provide power to system components.
Solution Notes

High-Speed Inspection: Maintain Cycle Time, Ensure Fastener Quality

High-Speed Inspection: Maintain Cycle Time, Ensure Fastener Quality is a Solution Notes covering the possibility to inspect all fasteners without affecting installation times by applying a process to automatically measure fasteners while they move through a feed tube into the installation machine. Solution Notes are short, informative pieces covering dynamic and emerging technologies within the aerospace and automotive industries to keep you up to date on how new, applied technologies are being used within the mobility space.
Solution Notes

The Right Balance for Small UAVs: Defining top-level requirements for the power

Small tactical UAVs (SUAVs) have made their mark in military operations with their ability to gather and provide localized, real-time information. Typical uses include perimeter surveillance of remote military compounds, over-the-horizon surveillance, and remote monitoring of critical logistics routes. However, their potential to take on increased and increasingly complex missions is hampered by their limited endurance. This work explores research done under the auspices of the European Commission’s Fuel Cell and Hydrogen Joint Undertaking on a fuel cell and battery hybrid energy storage system that could increase the total amount of onboard energy storage, while continuing to deliver the peak power needs of the SUAV.
Solution Notes

Drilling Material Stacks: Can it be both automated and affordable?

Automating a manufacturing process often comes with substantial investment or sustained operational costs of complex subsystems. But, by reducing complexity and using technologically mature components, it is possible to develop viable scaled and robust automated solutions. For the past several years, aerospace manufacturers have endeavored to automate manufacturing processes as much as possible for both production efficiencies and competitive advantage. Automating processes like drilling, fastening, sealing, painting, and composite material production have reaped a wide range of benefits; from improving quality and productivity to lowering worker ergonomic risks. The results have improved supply chains from small component manufacturers all the way up to airframe assemblers. That said, automation can be very expensive, and difficult to introduce when a product is anywhere beyond the beginning of its life cycle.
White Paper

Electric Flight Technology

The environmental impact of hydrocarbon-burning aircraft, both from the perspective of gas emissions and that of noise, is one of the main motivations for the move to electric propulsion. The added benefit from this shift to electric propulsion is that it has resulted in lowering the costs of electrical components such as motors, power electronic (PE) circuits, and batteries that are essential to this technology. This white paper seeks to explore the history, architecture, electrical components, and future trends of electric flight technology.
Tech Insights

Repairing Composites

As the aerospace industry continues on its quest for ever-increased efficiency, so goes the quest for ever-more composite content on aircraft. And with it, more opportunities to repair it. Typical composite panel fiber reinforcements are carbon, aramid, and fiberglass. The machining techniques for these typical composite materials are similar, but minor differences exist, such as the style of cutting tool or drill bit. Automated drilling methods that may be used during original manufacture are rarely used in typical composite repair situations.
Technical Paper

Heavy Duty Truck Cooling System Design Using Co-Simulation

In order to meet the legislated emissions levels, future diesel engines will likely utilize cooled exhaust gas re-circulation (EGR) to reduce emissions. The addition of the EGR cooler to the conventional vehicle coolant system creates several challenges. Firstly, the engine cooling system flow and heat rejection requirements both increase as it is likely that some EGR will be required at the rated power condition. This adversely affects packaging and fuel economy. The system design is further complicated by the fact that the peak duty of the EGR cooler occurs at part load, low speed conditions, whereas the cooling system is traditionally designed to handle maximum heat duties at the rated power condition of the engine. To address the system design challenges, Ricardo have undertaken an analytical study to evaluate the performance of different cooling system strategies which incorporate EGR coolers.
Technical Paper

A Compact Cooling System (CCS™): The Key to Meet Future Demands in Heavy Truck Cooling

To meet future needs for heavy truck cooling, a novel high performance radial compact cooling system (CCS) was developed. Measurements with a prototype system were conducted in a component wind tunnel and with truck-installed systems in a climatic vehicular wind tunnel. The CSS is compared to conventional axial and side-by-side systems. In comparison with a conventional axial system, the performance per unit volume of the CCS is 42% higher, the noise level is about 6 dB lower and the power consumption of the radial fan is 70% of the axial fan leading to significant savings in fuel consumption.
Technical Paper

Parking Cooling Systems for Truck Cabins

Engine independent AC-systems, or parking cooling systems for non-idling air conditioning are getting more and more important, because extremely uncomfortable conditions during breaks or a disproportionate amount of fuel consumption for engine idling during breaks are not longer accepted. For cost, weight and package reasons today only thermal storage systems are ready for series production of in series production. The benefits (comfort and fuel savings) and test results of such a system are shown. Future developments of fuel cells or new alternator/battery-systems will probably change this evaluation.
Technical Paper

Factors Affecting Truck Driver's Perceived Comfort

Truck driver's perception of ride quality/comfort is influenced by many factors relating to the driver, the vehicle and road surface roughness. A subjective rating survey was undertaken to identify the range of roughness wavelengths in the longitudinal road surface profile that affect the perceived ride of heavy articulated vehicles. They were found to range between 4.8 and 19.5 meters. Accordingly, a new roughness index called Profile Index (PI) was established. During the survey, data was collected on factors such as driver's age, years of driving experience, weight, vehicle's age, loading condition, cab location, type of driving axle suspension, weather condition and time of the rating. The effects of these factors were studied at different PI levels to test the viability of the PI as a measure of the perceived heavy vehicle ride and to establish if any of the above factors influenced the drivers' judgments during the survey.
Technical Paper

Powertrain Mounting Development Based on Computational Simulation and Experimental Verification Method

This paper presents a method applied in the development of an optimized transmission rubber mount of a midsize Diesel pickup. The focus of this optimization were to improve the vibration insulation and consequently improve the NVH (Noise and Vibration Harshness) quality of the vehicle. The paper describes the basic mounting design and manufacturing constrains, the simulation modeling basis, inputs required to perform the computational simulation, the experimental method used to extract the center of gravity and rotational inertia of the powertrain and a general mounting tuning strategy. The mounting dynamic simulation results for the optimized version is also presented compared to the original one. In order to quantify the noise and vibration improvements, the internal noise and vibration transmissibility levels were measured and compared in percentile reduction basis to current vehicle levels
Technical Paper

Effect of Seating Foam on the Acoustic Behavior of an Earth-Moving Cab

The designs of vehicle seats have significant impact on interior acoustic modes as well as sound pressure level inside the vehicles. Seats trimmed with elastic porous materials are especially critical to the acoustic behavior of the vehicles due to the sound absorption of the materials. This paper demonstrates how seating materials affect the acoustic performance of an earh-moving cab. To accurarely simulate the sound absorption of the seat, the seat was modeled as a bulk reactive absorber instead of a local reactive absorber.