Criteria

Display:

Results

Viewing 1 to 30 of 7541
2017-06-17
Journal Article
2017-01-9077
Zaimin Zhong, Junjie Li, Shuihua Zhou, Yingkun Zhou, Shang Jiang
Description of PMSM torque in high accuracy is critical and previous work for its further research. However, the traditional linear torque model fails to describe its non-ideal characteristics of practical working. This paper presents a generalized torque model of PMSM based on flux linkage reconstruction. In synchronous rotating space coordinates, flux linkage were reconstructed through Fourier series expansion and bivariate polynomial. Based on this model, a precise PMSM torque ripple description and corresponding suppression method were developed. Current feed-forward compensation and the rotor field oriented control were applied in torque ripple suppression. Simulation and experimental results both show that the model not only accurately describes the nonlinear variation of PMSM torque in different working conditions, but also can be used to suppress PMSM torque ripple effectively.
2017-06-05
Technical Paper
2017-01-1775
Mark A. Gehringer, Robert Considine, David Schankin
This paper describes recently developed test methods and instrumentation to address the specific noise and vibration measurement challenges posed by large diameter single-piece tubular aluminum propeller shafts with high modal density. The application described in this paper is a light duty truck, although the methods described are applicable to any rotating shaft with similar dynamic properties. To provide a practical example of the newly developed methods and instrumentation, rotating and non-rotating data were acquired in-situ for several propeller shafts of varying construction, including both lined and unlined shafts. Data were also acquired with and without a torsional tuned vibration absorber attached to the driveline. The example data exhibit features that are uniquely characteristic of large diameter single-piece tubular shafts with high modal density, including the particular effect of shaft rotation on the measurements.
2017-06-05
Technical Paper
2017-01-1847
Asif Basha Shaik Mohammad, Ravindran V, Nageshwara Rao P
The high noise and vibration levels, to which drivers of agricultural tractor are often exposed for long periods of time, have a significant part in the driver’s fatigue and may lead to substantial hearing impairment and health problems. For these reasons, the noise and vibration comfort has become an important criterion in the design of the driver’s cabin and a determining factor in the acceptance and sales potential of agricultural tractors. Therefore, it is essential for an optimal cabin design to have time and cost effective analysis tools for the assessment of the noise and vibration characteristics of various design alternatives at both the early design stages and the prototype testing phase. Airborne excitation and Structure Borne excitation are two types of dynamic cabin excitations mainly cause the interior noise in a driver’s cabin.
2017-06-05
Technical Paper
2017-01-1832
Giovanni Rinaldi, Jason Edgington, Brian Thom
Typical approaches to regulating sound performance of vehicles and products rely upon A-weighted sound pressure level or sound power level. It is well known that these parameters do not provide a complete picture of the customer’s perception of the product and may mislead engineering efforts for product improvement. A leading manufacturer of agricultural equipment set out to implement a process to include sound quality targets in its product engineering cycle. First, meaningful vehicle level targets were set for a tractor by conducting extensive jury evaluation testing and by using objective metrics that represent the customer’s subjective preference for sound. Sensitivity studies (“what-if” games) were then conducted, using the predicted sound quality (SQ) index as validation metric, to define the impact on the SQ performance of different noise components (frequency ranges, tones, transients).
2017-06-05
Technical Paper
2017-01-1836
Fangfang Wang, Peter Johnson, Hugh Davies, Bronson Du
Introduction Whole-body vibration (WBV) is associated with several adverse health and safety outcomes including low-back pain and driver fatigue. Recently introduced active suspension truck seats have been shown to reduce WBV exposures up to 50% relative to industry standard air-suspension seats, but drivers do not universally prefer these active suspension seats and their higher costs concern some companies. The objective of this study was to evaluate the efficacy of three commercially-available air-suspension truck seats for reducing truck drivers’ exposures to WBV. Methods Seventeen truck drivers operating over a standardized route were recruited for this study and three commercially available air suspension seats were evaluated. The predominant, z-axis average weighted vibration (Aw) and Vibration Dose Values (VDV) were calculated and normalized to represent eight hours of truck operation.
2017-06-05
Technical Paper
2017-01-1839
Edward T. Lee
It is common for automotive manufacturers and off-highway machinery manufacturers to gain an insight of the system structural dynamics by evaluating the system inertance functions near the mount locations. The acoustic response at the operator’s ears is a function of the vibro-acoustic characteristics of the system structural dynamics interacting with the cavity, with the actual load applied at the mount locations. The overall vibro-acoustic characteristics can be influenced by the change in local stiffness. To analyze the response of a system, it is necessary to go beyond analyzing its transfer functions. The actual load needs to be understood and be applied towards the transfer function set. Finite element (FE) based analysis provides a good foundation for deterministic solutions. However finite element method suffers in accuracy as the frequency increases. Many NVH problems happen to be at the mid frequency range where solving the problem with the FE-only approach falls short.
2017-06-05
Technical Paper
2017-01-1858
James Haylett, Andrew Polte
Truck and construction seats offer a number of different challenges over automotive seats in the identification and characterization of Buzz, Squeak, and Rattle (BSR) noises. These seats typically have a separate air or mechanical suspension and usually have a larger number and variety of mechanical adjustments and isolators. Associated vibration excitation tend to have lower frequencies with larger amplitudes. In order to test these seats for both BSR and vibration isolation a low-noise shaker with the ability to test to low frequency, down to 1 Hz was used. Slowly swept sine excitation was particularly helpful in understanding the seat mode shapes and nonlinearities at low frequency which showed large displacements. A typical sample set of seat BSR sounds are described in terms their time and frequency characteristics and widely used sound quality metrics.
2017-06-05
Technical Paper
2017-01-1791
David Neihguk, Shreyas Fulkar
Parametric model of a production hybrid (made up of reactive and dissipative elements) muffler for tractor engine is developed to compute the acoustic Transmission Loss (TL). The objective is to simplify complex muffler acoustic simulations without any loss of accuracy, robustness and usability so that it is accessible to all product development engineers and designers. The parametric model is a 3D Finite Element Method (FEM) based built in COMSOL model builder which is then converted into a user-friendly application (App) using COMSOL App builder. The uniqueness of the App lies in its ability to handle not only wide range of parametric variations but also variations in the physics and boundary conditions. This enables designers to explore various design options in the early design phase without the need to have deep expertise in a specific simulation tool nor in numerical acoustic modeling.
2017-06-05
Technical Paper
2017-01-1835
Nader Dolatabadi, Ramin Rahmani, Stephanos Theodossiades, Homer Rahnejat, Guy Blundell, Guillaume Bernard PhD
Clutches are commonly utilised in passenger type and off-road heavy-duty vehicles to disconnect the engine from the driveline and other parasitic loads. In off-road heavy-duty vehicles, fuel efficiency and start-up functionality at extended ambient conditions, such as cold start-up and low intake absolute pressure are crucial. Off-road vehicle manufacturers usually overcome the parasitic loads in these conditions by oversizing the engine. Caterpillar Inc. as the pioneer in the off-road technology has developed a novel clutch design to allow for engine downsizing while vehicle’s performance is not affected. The tribology behaviour of clutch will be crucial to start engagement in time and reach the maximum clutch capacity in the shortest possible time and the safest method in terms of dynamics. A multi-body dynamics model of the clutch system is developed in MSC ADAMS. Flywheel carries the same speed and torque as engine and represents the engine input to the clutch.
2017-06-05
Technical Paper
2017-01-1833
Bonan Qin, Jue Yang, Xinxin Zhao
Articulated engineering vehicle travels on complex road, its working condition is bad and because of the non-rigid connection between the front and rear body, additional degrees of freedom is brought in and the transverse stiffness is relatively weak. When the articulated vehicle run in a high speed along a straight line, it is easy to cause the transverse swing and the poor manipulation stability. If it is serious enough, it will lead to "snake shape" instability phenomena. This kind of instability will increase driving resistance and tire wear, the lateral dynamic load and aggravate the damage of the parts. When steering, the center of gravity will offset laterally which will lead a higher probability of rollover accident. A mathematical model for a 35t articulated dump truck with four motor-driven wheels is established in this paper, to study the condition for its stable driving and the effects of the vehicle structural parameters.
2017-06-05
Technical Paper
2017-01-1837
Paul R. Donavan, Carrie Janello
Acoustic beamforming was used to localize noise sources on heavy trucks operating on highways in California and North Carolina at a total of 20 sites. Over 1,200 trucks were measured under a variety of operating conditions including cruise on level highways, on upgrades, down degrades, low speed acceleration, and for various speeds and pavements. The contours produced by the beamforming measurements were used to identify specific source contributions under these conditions and for a variety of heavy trucks. Consistently, the highest noise levels were seen the tire-pavement interface with lessor additional noise radiated from the engine compartment. Noise from elevated exhaust stacks was only documented for less than 5% of the trucks measured. The results were further reduced to produce vertical profiles of noise levels versus height above the roadway. The profiles were normalized to the highest noise level at ground level.
2017-06-05
Technical Paper
2017-01-1871
Nobutaka Tsujiuchi, Masahiro Akei, Akihito Ito, Daisuke Kubota, Koichi Osamura
This paper describes new method for selecting optimal field points in Inverse-Numerical Acoustic analysis (INA), and an application to construction of sound source model for diesel engine. INA is a method that identifies surface vibration of the sound source by using acoustic transfer functions and actual sound pressures which are measured at field points located near the sound source. In the INA, for measuring sound pressures, it is necessary to determine the arrangement of field points. The increase of field points leads to longer test and analysis time. Therefore, guidelines for deciding field point arrangement are needed to conduct INA efficiently. The authors focused on the standard deviations of distance between sound source elements and field points, and proposed new guideline for optimal selection of the field points, in a past study. In the past study, the effectiveness of this guideline was verified using a simple plate model.
2017-06-05
Technical Paper
2017-01-1875
Martino Pigozzi, Flavio Faccioli, Carlo Ubertino, Davide Allegro, Daniel Zeni
Within recent years, passenger comfort has become a main focus for the automotive industry. The topic is directly connected to acoustics, since sounds and noises have a major impact on the well-being of vehicle occupants. The so-called “noise control” focuses on directly optimizing acoustic comfort by implementing innovative materials or geometries for automotive components and systems. One possibility to optimize the acoustics within a vehicle is connected to the phenomenon of sloshing in selective catalytic reduction (SCR) tanks. Sloshing is a noise which is generated during normal driving situations by the motion of the liquid in the tank. Until now, no valid procedure for measuring the sloshing noise in SCR tanks, or a specific acoustic target which the SCR tanks need to fulfill has been defined. For this reason, It's been developed a reproducible laboratory-based methodology to measure the sound generated by the tank to compare it with a defined sound pressure level target.
2017-04-11
Journal Article
2017-01-9177
N. Obuli Karthikeyan, R. Dinesh Kumar, V. Srinivasa Chandra, Vela Murali
Abstract In the modern automotive sector, durability and reliability are the most common terms. Customers are expecting a highly reliable product but at low cost. Any product that fails within its useful life leads to customer dissatisfaction and affects the reputation of the OEM. To eradicate this, all automotive components undergo stringent validation protocol, either in proving ground or in lab. This paper details on developing an accelerated lab test methodology for steering gearbox bracket using fatigue damage and reliability correlation by simulating field failure. Initially, potential failure causes for steering gearbox bracket were analyzed. Road load data was then acquired at proving ground and customer site to evaluate the cumulative fatigue damage on the steering gearbox bracket. To simulate the field failure, lab test facility was developed, reproducing similar boundary conditions as in vehicle.
2017-04-11
Journal Article
2017-01-9176
Jitesh Shukla, A Grinspan, Jeyanthi subramanian
Abstract Lifting axles are auxiliary axles that provide increased load carrying capacity in heavy commercial vehicles. Lift axle gives better fuel efficiency as well as it reduces the operational costs by means of increasing the loading carrying capacity. These axles are raised when the vehicle is in unloaded condition, thus increasing the traction on remaining wheels and reducing the tire wear which in turn lower down the maintenance cost of the vehicle. Lifting height and force requires to lift the whole mechanism and are two main considerable factors to design the lifting axle mechanism. Although in India currently, the use of lift mechanism of single tire with continuous axle is more common. But in the case of pusher axle, continuous axle is unable to lift more after certain height because of the draft angle of the propeller shaft, and single tire axle which has less load carrying capacity up to 6T (Tons).
2017-04-11
Journal Article
2017-01-9178
Arash E. Risseh, Hans-Peter Nee, Olof Erlandsson, Klas Brinkfeldt, Arnaud Contet, Fabian Frobenius lng, Gerd Gaiser, Ali Saramat, Thomas Skare, Simon Nee, Jan Dellrud
The European Union’s 2020 target aims to be producing 20 % of its energy from renewable sources by 2020, to achieve a 20 % reduction in greenhouse gas emissions and a 20 % improvement in energy efficiency compared to 1990 levels. To reach these goals, the energy consumption has to decrease which results in reduction of the emissions. The transport sector is the second largest energy consumer in the EU, responsible for 25 % of the emissions of greenhouse gases caused by the low efficiency (<40 %) of combustion engines. Much work has been done to improve that efficiency but there is still a large amount of fuel energy that converts to heat and escapes to the ambient atmosphere through the exhaust system. Taking advantage of thermoelectricity, the heat can be recovered, improving the fuel economy.
2017-03-28
Technical Paper
2017-01-1208
Kristin R. Cooney
Abstract This paper will discuss a compliance demonstration methodology for UN38.3, an international regulation which includes a series of tests that, when successfully met, ensure that lithium metal and lithium ion batteries can be safely transported. Many battery safety regulations, such as FMVSS and ECE, include post-crash criteria that are clearly defined. UN38.3 is unique in that the severity of the tests drove changes to battery design and function. Another unique aspect of UN38.3 is that the regulatory language can lead to different interpretations on how to run the tests and apply pass/fail criteria; there is enough ambiguity that the tests could be run very differently yet all meet the actual wording of the regulation. A process was created detailing exactly how to run the tests to improve consistency among test engineers. As part of this exercise, several tools were created which assist in generating a test plan that complies with the UN38.3 regulation.
2017-03-28
Technical Paper
2017-01-1478
Srinivas Kurna, Sajal Jain, Palish Raja, Laxman Vishwakarma
Abstract In an automobile, main function of the steering system is to allow the driver to guide the vehicle on a desired course. Steering system consists of various components & linkages. Using these linkages, the torque from steering wheel is transferred to tyre which results in turning of the vehicle. Over the life of vehicle, these steering components are subjected to various loading conditions. As steering components are safety critical parts in the vehicle, therefore they should not fail while running because it will cause vehicle breakdown. In commercial vehicle segment, vehicle breakdown means delay in freight delivery which results in huge loss to costumer. Therefore, while designing steering components one should consider all the possible loadings condition those are possible. But, it can’t be done through theoretical calculation. Therefore, physical tests have to be carried out to validate design of steering system, which is very costly & time-consuming process.
2017-03-28
Technical Paper
2017-01-1333
Sasikumar P, C. Sujatha, Chinnaraj K.
Abstract In commercial vehicles, exhaust system is normally mounted on frame side members (FSM) using hanger brackets. These exhaust system hanger brackets are tested either as part of full vehicle durability testing or as a subsystem in a rig testing. During initial phases of product development cycle, the hanger brackets are validated for their durability in rig level testing using time domain signals acquired from mule vehicle. These signals are then used in uni-axial, bi-axial or tri-axial rig facilities based on their severity and the availability of test rigs. This paper depicts the simulation method employed to replicate the bi-directional rig testing through modal transient analysis. Finite Element Method (FEM) is applied for numerical analysis of exhaust system assembly using MSC/Nastran software with the inclusion of rubber isolator modeling, meshing guidelines etc. Finite Element Analysis (FEA) results are in good agreement with rig level test results.
2017-03-28
Technical Paper
2017-01-1341
Alok Kumar, Sandeep Sharma
Abstract Public conveyance such as a bus is a major contributor to socio - economic development of any geography. The international market for passenger bus needed to be made viable in terms of passenger comfort, minimum operational costs of the fleet by reduced fuel consumption through light weighting and yet robust enough to meet stringent safety requirements. Optimized design of bus body superstructure plays vital role in overall performance and safety, which necessitates to evaluate bus structure accurately during initial phase of design. This paper presents a robust methodology in numerical simulation for enhancing the structural characteristics of a bus body with simultaneous reduction in the weight by multi-material optimization while supplemented with sensitivity and robustness analysis. This approach ensures significant reduction in vehicle curb weight with promising design stiffness.
2017-03-28
Technical Paper
2017-01-1503
Jared Johan Engelbrecht, Tony Russell Martin, Piyush M. Gulve, Nagarjun Chandrashekar, Amol Dwivedi, Peter Thomas Tkacik, Zachary Merrill
Abstract Most commercial heavy-duty truck trailers are equipped with either a two sensor, one modulator (2S1M) or four sensors, two modulator (4S2M) anti-lock braking system (ABS). Previous research has been performed comparing the performance of different ABS modules, in areas such as longitudinal and lateral stability, and stopping distance. This study focuses on relating ABS module type and wheel speed sensor placement to trailer wheel lock-up and subsequent impact to tire wear for tandem axle trailers with the Hendrickson air-ride suspension. Prior to tire wear inspection, functionality of the ABS system was testing using an ABS scan tool communicating with the SAE J1587 plug access port on the trailer. Observations were documented on trailers using the 2S1M system with the wheel speed sensor placed on either the front or rear axle of a tandem pair.
2017-03-28
Technical Paper
2017-01-1495
Srinivas Kurna, Ruchik Tank, Krishna Srikanth Achanta
1. Abstract At the time of invention of road coaches, the vehicle consisted only of an axle with wheels and a body attached. Smooth roads were built for a better ride comfort however they were not consistent. The road coaches were too bumpy and uncomfortable for the passenger along with the driver who was not able to control the vehicle. That's why the engineers had to shift their attention to the suspension system for a better ride comfort and handling. The technology has advanced with time so as the suspension system. Rubber ended type leaf spring is one of the suspension system types available in the industry. The main function of a suspension in order of importance is as below: 1 Acts as a cushioning device ensuring the comfort of the driver and passengers;2 Maximizes the contact between the tires and the road surface to provide steering stability with good handling;3 Protects the vehicle itself and any cargo or luggage from damage and wear.
2017-03-28
Technical Paper
2017-01-1420
Kirsten White, Raymond Merala
Abstract This study presents a method to characterize the accuracy and precision of video-acceleration-position (VAP) devices, and presents results from testing of one such vehicle camera (“dashcam”) with global positioning system (GPS) used by taxi companies nationwide. Tests were performed in which vehicle kinematic data were recorded in a variety of real world conditions simultaneously by the VAP device, accelerometers, and a proven GPS-based speed sensing and data acquisition system. Data from the VAP device was compared to data collected by the reference instruments to assess timing, precision, and accuracy of reported parameters. Still images from the VAP video recording were compared with three dimensional laser scan data in order to analyze field of view. Several case studies are discussed, and some guidelines and cautions are provided for use of VAP data in accident reconstruction applications.
2017-03-28
Technical Paper
2017-01-1419
Smruti Panigrahi, Jianbo Lu, Sanghyun Hong
Abstract Characterizing or reconstructing incidents ranging from light to heavy crashes is one of the enablers for mobility solutions for fleet management, car-sharing, ride-hailing, insurance etc. While crashes involving airbag deployment are noticeable, light crashes without airbag deployment can be hidden and most drivers do not report these incidents. In this paper, we are using vehicle responses together with a dynamics model to trace back if abnormal forces have been applied to a vehicle so as to detect light crashes. The crash location around the perimeter of the vehicle, the direction of the crash force, and the severity of the crashes are all determined in real-time based on on-board sensor measurements which has further application in accident reconstruction. All of this information will be integrated to a feature called “Incident Report”, which enable reporting of minor accidents to the relevant entities such as insurance agencies, fleet managements, etc.
2017-03-28
Technical Paper
2017-01-1410
Richard F Lambourn, James Manning
Abstract It can happen, following a collision between a car and a pedestrian or in a deliberate assault with a motor vehicle, that the pedestrian comes to be caught or wedged beneath the car, and that the driver then travels on for a considerable distance, afterwards claiming to have been unaware of the presence of the person. However, police, lawyers and jurors are often incredulous that the driver should not have been able to “feel” that there was something underneath his car. The authors have investigated the matter by carrying out practical tests with suitable cars and dummies. This paper describes instrumented tests performed by the authors following one such incident, and gives accounts of two previous incidents investigated in a more subjective fashion. The general conclusion is that the effect on the behavior of the car is very small and that a driver might indeed be unaware that there was a person trapped beneath them.
2017-03-28
Technical Paper
2017-01-1411
Gary A. Davis
Abstract For at least 15 years it has been recognized that pre-crash data captured by event data recorders might help illuminate the actions of drivers prior to crashes. In left-turning crashes where pre-crash data are available from both vehicles it should be possible to estimate features such as the location and speed of the opposing vehicle at the time of turn initiation and the reaction time of the opposing driver. Difficulties arise however from measurement errors in pre-crash data and because the EDR data from the two vehicles are not synchronized so the resulting uncertainties should be accounted for. This paper describes a method for accomplishing this using Markov Chain Monte Carlo computation. First, planar impact methods are used to estimate the speeds at impact of the involved vehicles. Next, the impact speeds and pre-crash EDR data are used to reconstruct the vehicles’ trajectories during approximately 5 seconds preceding the crash.
2017-03-28
Technical Paper
2017-01-0778
Vishnu Vijayakumar, P. Sakthivel, Bhuvenesh Tyagi, Amardeep Singh, Reji Mathai, Shyam Singh, Ajay Kumar Sehgal
Abstract In the light of major research work carried out on the detrimental health impacts of ultrafine particles (<50 nm), Euro VI emission standards incorporate a limit on particle number, of which ultrafine particles is the dominant contributor. As Compressed Natural Gas (CNG) is a cheaper and cleaner fuel when compared to diesel, there has been a steady increase in the number of CNG vehicles on road especially in the heavy duty segment. Off late, there has been much focus on the nature of particle emissions emanating from CNG engines as these particles mainly fall under the ultrafine particle size range. The combustion of lubricant is considered to be the dominant source of particle emissions from CNG engines. Particle emission due to lubricant is affected by the oil transport mechanisms into the combustion chamber which in turn vary with engine operating conditions as well as with the physico chemical properties of the lubricant.
2017-03-28
Technical Paper
2017-01-0890
Yoichiro Nakamura, Masahisa Horikoshi, Yasunori TAKEI, Takahiro Onishi, Yasuhiro Murakami, Chip Hewette
Abstract Heavy duty vehicles take a large role in providing global logistics. It is required to have both high durability and reduced CO2 from the viewpoint of global environment conservation. Therefore lubricating oils for transmission and axle/differential gear box are required to have excellent protection and longer drain intervals. However, it is also necessary that the gear oil maintain suitable friction performance for the synchronizers of the transmission. Even with such good performance, both transmission and axle/differential gear box lubricants must balance cost and performance, in particular in the Asian market. The development of gear oil additives for high reliability gear oil must consider the available base oils in various regions as the additive is a global product. In many cases general long drain gear oils for heavy duty vehicles use the group III or IV base oils, but it is desirable to use the group I/II base oils in terms of cost and availability.
2017-03-28
Technical Paper
2017-01-0888
Prashant Kumar, Reji Mathai, Sanjeev KUMAR, Ashish Kachhawa, Ajay Kumar Sehgal, Snigdhamayee Praharaj
Abstract The growing transportation sector worldwide has opened up a way forward not only for the scientists & researchers but also for the OEMs to find out the options for fuel efficient automotive vehicles with reduced emissions during their usage. The demand of automotive vehicles has been doubled in last few years and in turn the market for lubricants and transmission fluids are flourishing. Several new formulations of lubricants are getting popularized with major suppliers to achieve the end user expectations in terms of fuel economy benefits, engine life and emissions. The market trend is continuously moving towards the improvement in lubricant formulation to the lower viscosity ranges and in this direction several companies are into development of multi-grade low viscosity range of engine oils (lubricants) which is said to be providing the benefits in terms of fuel economy.
2017-03-28
Technical Paper
2017-01-0866
Edwin N. Quiros, Karl B.N. Vergel, Ernesto B. Abaya
Abstract This paper presents a preliminary study to estimate, using on-road and laboratory tests, the mileage range of liquefied petroleum gas (LPG) as an alternative fuel for diesel-fed public utility jeepneys in the Philippines. Data from the study would be used by the Philippine Department of Energy to formulate and implement alternative fuel programs for public transport. On-road fuel consumption, load factor, and GPS speed data from selected in-use LPG and diesel jeepneys plying a chosen urban route were gathered to develop corresponding drive cycles for chassis dynamometer testing at 100% load factor were conducted to estimate an upper limit for fuel consumption. Measured on-road diesel jeepney mileage was about 6.7 km/liter at 63.5% load factor while that for LPG jeepney was 3.8-4.2 km/liter at 59.8% load factor. Drive cycle tests yielded 5.2 km/liter for diesel and 2.6-3.1 km/liter for LPG.
Viewing 1 to 30 of 7541