Refine Your Search

Search Results

Journal Article

Legibility: Back to the Basics

2011-04-12
2011-01-0597
The objective for this study was to revisit some of the known factors that affect legibility including font characteristics, as well as, contrast polarity, luminance contrast, and color contrast under high ambient conditions as specified in SAE J1757. The study focused on older drivers due to their increased visual needs and limitations. The study was conducted in 2 phases: 1) a study of font characteristics; character height, character width, and stroke width using a central composite design. Subjects read a group of letters and numerals displayed on a laptop display using occlusion goggles. The reading time (Total Shutter Open Time or TSOT), reading errors, and a subjective Readability Rating (using a 4 point scale "Very Easy," "Easy," "Difficult," "Very Difficult") were recorded. Licensed drivers in three age groups, 25 to 44 yrs, 45 to 59 yrs, and 61 to 91 yrs participated. The response surfaces were generated and compared to the character sizes recommended in ISO 15008.
Technical Paper

Lessons Learned from the Lead-Acid Battery Recycling Success Story

1997-11-17
973209
The lead battery industry's proactive approach to working with state and federal regulators on environmental regulatory and legislative issues has proven to be a successful tool in producing a high recycling rate for lead-acid batteries. The reverse distribution system set up by the battery industry to collect and recycle lead-acid batteries alleviates the concerns raised by governmental agencies and environmental groups over how the batteries are handled. Not only does the industry benefit from better public relations as a result of their commitment to ensure a high recycling rate, it also provides a reliable source of recyclable materials necessary to operate battery recycling facilities.
Technical Paper

Lessons Learnt in Testing High-Reliability Automotive Software

1998-11-16
982814
This paper outlines Pi Technology's approach to testing high-reliability automotive software. Based on data collected during an engine controller development, it discusses the value of different types of testing at various stages of the design process and when errors are found. The team structure used for embedded systems is discussed to provide the context in which software development occurs.
Technical Paper

Leveraging Risk Tolerances and Simple Kinematics to Quantify Fault Tolerant Time Intervals for Commercial Trucks

2021-04-06
2021-01-0066
The ISO 26262 series of standards for vehicle functional safety codify requirements to avoid unreasonable risk from the failure of electrical or electronic (E/E) systems. E/E failures may cause malfunctioning behavior that manifest as vehicle-level hazardous events. The ISO 26262 second edition includes commercial trucking, which employs significant variation from the passenger car development cycle. The highly distributed nature of E/E system development and integration in commercial trucks complicates forging unified safety concepts. For instance, the Fault Tolerant Time Interval (FTTI) quantifies the minimum time span from the occurrence of a fault to the possible occurrence of a hazardous event. Often, the subjectivity involved in defining unreasonable risk and hazardous event onset frustrates consensus among stakeholders.
Technical Paper

Leveraging a Commercial Medium-Duty Product for the Heavy-Duty Pickup Truck Market

1999-11-15
1999-01-3743
Allison Transmission has developed a family of three new automatic transmission products, the 1000, 2000 and 2400 Series™, for the light and medium-duty commercial markets. This technical paper will discuss how Allison first identified the opportunity, established the market requirements, designed, and validated these new products.
Journal Article

LiDAR Data Segmentation in Off-Road Environment Using Convolutional Neural Networks (CNN)

2020-04-14
2020-01-0696
Recent developments in the area of autonomous vehicle navigation have emphasized algorithm development for the characterization of LiDAR 3D point-cloud data. The LiDAR sensor data provides a detailed understanding of the environment surrounding the vehicle for safe navigation. However, LiDAR point cloud datasets need point-level labels which require a significant amount of annotation effort. We present a framework which generates simulated labeled point cloud data. The simulated LiDAR data was generated by a physics-based platform, the Mississippi State University Autonomous Vehicle Simulator (MAVS). In this work, we use the simulation framework and labeled LiDAR data to develop and test algorithms for autonomous ground vehicle off-road navigation. The MAVS framework generates 3D point clouds for off-road environments that include trails and trees.
Technical Paper

LiDAR and Camera-Based Convolutional Neural Network Detection for Autonomous Driving

2020-04-14
2020-01-0136
Autonomous vehicles are currently a subject of great interest and there is heavy research on creating and improving algorithms for detecting objects in their vicinity. A ROS-based deep learning approach has been developed to detect objects using point cloud data. With encoded raw light detection and ranging (LiDAR) and camera data, several basic statistics such as elevation and density are generated. The system leverages a simple and fast convolutional neural network (CNN) solution for object identification and localization classification and generation of a bounding box to detect vehicles, pedestrians and cyclists was developed. The system is implemented on an Nvidia Jetson TX2 embedded computing platform, the classification and location of the objects are determined by the neural network. Coordinates and other properties of the object are published on to various ROS topics which are then serviced by visualization and data handling routines.
Technical Paper

Licensing Agreement

1999-09-14
1999-01-2796
As the technological revolution continues to hurtle forward, the importance of the licensing or technology transfer contract grows apace. This article gives a relatively brief introduction to certain parts of the licensing agreement and various principles and procedures of licensing negotiations. There is also included a brief explanation of the Disclosure and Secrecy Agreement and its growing variety of applications.
Technical Paper

Life Cycle Assessment of a Truck Component - Air Deflection System

1998-11-30
982173
In the past there has been a concentration on performing LCAs of car components. Based on the increasing experience and know-how gained in the past by performing LCAs of car components truck designers get the chance to make a statement about the ecological impact of each alternative. The most significant difference between LCAs of car and truck components is the use phase. This paper describes a Life-Cycle-Assessment (LCA) of different air deflection systems made of composite materials. The actually used system is produced by Resin Transfer Molding (RTM) while a possible alternative could be made out of Sheet Molding Compound (SMC). The calculations have shown that there exists a potential to improve the ecological profiles of composite components by replacing glass fibers with natural fibers.
Technical Paper

Life Cycle Energy Use and GHG Emissions Assessment for DME from Coal

2011-08-30
2011-01-1959
This study provides an LCA of coal derived DME vehicle fuel cycle. Two DME production systems were evaluated, one is single DME production system, and the other is DME/IGCC cogeneration (polygeneration) system. The effects of CCS technology on energy use and GHG emissions were analyzed. For single DME production design, WTW total energy use and fossil energy is about 80% larger than that for petroleum diesel production, and increases life-cycle GHG emissions by more 200% relative to petroleum diesel. Results for DME/IGCC production design pathway from displacement method are almost the same with the petroleum diesel pathway. CCS incurs an energy penalty of 7-16%.
Technical Paper

Life Estimation of Vehicle Sub-Systems Using Vibrational Fatigue

2019-01-09
2019-26-0291
Most popular practice for analyzing the Subsystem failures in commercial vehicles is physical testing. These physical tests are carried out by three tests; Endurance testing, Accelerated Endurance Testing and Rig test simulation. All the three methods are costly and repetitive iterations of these tests is not economical. Therefore, in our organization, we established a method in virtual domain in order to reduce the repetitive iterations and also reduction in time consumed per iteration. General practice in our organization for Finite Element Analysis (FEA) calculation was inclusive of Model preparation, Transient analysis using Nastran. The results from the Transient analysis are used for performing fatigue analysis in fatigue software. In this process, Transient analysis and Model preparation are very much time consuming processes. Model preparation cannot be reduced, but to reduce the transient analysis time, we established a method in frequency domain (vibrational fatigue) [1].
Technical Paper

Life Prediction of a Refuse Truck Cab for Automatic Side Loading operation using Inertia Relief

2013-05-13
2013-01-2011
Refuse Trucks are used to pick up garbage from houses. These trucks have huge robotic arms connected to the frame which are operated by hydraulic mechanism operated by the driver sitting inside the cab of the truck. The operator of the truck controls the robotic arm using a lever. Once the truck is positioned aside the garbage can, the operator moves the robotic arm outwards, grabs hold of the garbage can, picks up the garbage can and dumps the garbage into the truck. During this operation, the frame articulates and moves due to the frame suspension causing the cab to move along with the frame. This operation is performed about 1000 times a day, 5days a week for 12 years which could result in some amount of damage to the cab over its life. Since the time rate of application of the forces during the Automatic Side Loading operation is small compared to the lowest flexible mode of the cab, modal amplification is considered unlikely.
Journal Article

Lifetime Assessment of Cylinder Heads for Efficient Heavy Duty Engines Part I: A Discussion on Thermomechanical and High-Cycle Fatigue as Well as Thermophysical Properties of Lamellar Graphite Cast Iron GJL250 and Vermicular Graphite Cast Iron GJV450

2017-03-28
2017-01-0349
Cast iron materials are used as materials for cylinder heads for heavy duty internal combustion engines. These components must withstand severe cyclic mechanical and thermal loads throughout their service life. While high-cycle fatigue (HCF) is dominant for the material in the water jacket region, the combination of thermal transients with mechanical load cycles results in thermomechanical fatigue (TMF) of the material in the fire deck region, even including superimposed TMF and HCF loads. Increasing the efficiency of the engines directly leads to increasing combustion pressure and temperature and, thus, lower safety margins for the currently used cast iron materials or alternatively the need for superior cast iron materials. In this paper (Part I), the TMF properties of the lamellar graphite cast iron GJL250 and the vermicular graphite cast iron GJV450 are characterized in uniaxial tests and a mechanism-based model for TMF life prediction is developed for both materials.
Journal Article

Lifetime Assessment of Cylinder Heads for Efficient Heavy Duty Engines Part II: Component-Level Application of Advanced Models for Thermomechanical Fatigue Life Prediction of Lamellar Graphite Cast Iron GJL250 and Vermicular Graphite Cast Iron GJV450 Cylinder Heads

2017-03-28
2017-01-0346
A complete thermomechanical fatigue (TMF) life prediction methodology is developed for predicting the TMF life of cast iron cylinder heads for efficient heavy duty internal combustion engines. The methodology uses transient temperature fields as thermal loads for the non-linear structural finite-element analysis (FEA). To obtain reliable stress and strain histories in the FEA for cast iron materials, a time and temperature dependent plasticity model which accounts for viscous effects, non-linear kinematic hardening and tension-compression asymmetry is required. For this purpose a unified elasto-viscoplastic Chaboche model coupled with damage is developed and implemented as a user material model (USERMAT) in the general purpose FEA program ANSYS. In addition, the mechanism-based DTMF model for TMF life prediction developed in Part I of the paper is extended to three-dimensional stress states under transient non-proportional loading conditions.
Journal Article

Lift-Off Length in an Optical Heavy-Duty Diesel Engine

2015-04-14
2015-01-0793
High-speed OH chemiluminescence imaging is used to measure the lift-off length of diesel sprays in an optical heavy-duty diesel engine of 2 L displacement operated at 1200 rpm and 5 bar IMEP. Stereoscopic images are acquired at two different wavelengths (310 and 330 nm). Subtraction of pairwise images helps reducing the background coming from natural soot incandescence in the OH chemiluminescence images. Intake air temperature (343 to 403 K), motored top dead center density (18 to 22 kg/m3), fuel injection pressure (150 to 250 MPa), intake oxygen concentration (17 to 21 %vol) and nozzle diameter (0.1 and 0.14 mm) are varied and a nonlinear regression model is derived from the experimental results to describe stabilized lift-off length as function of the experimental factors. The lift-off length follows the general trends that are known from spray vessel investigations, but the strength of the dependence on certain variables deviates strongly from those studies.
Journal Article

Lift-Off Length in an Optical Heavy-Duty Diesel Engine: Effects of Swirl and Jet-Jet Interactions

2015-09-06
2015-24-2442
The influence of jet-flow and jet-jet interactions on the lift-off length of diesel jets are investigated in an optically accessible heavy-duty diesel engine. High-speed OH chemiluminescence imaging technique is employed to capture the transient evolution of the lift-off length up to its stabilization. The engine is operated at 1200 rpm and at a constant load of 5 bar IMEP. Decreasing the inter-jet spacing shortens the liftoff length of the jet. A strong interaction is also observed between the bulk in-cylinder gas temperature and the inter-jet spacing. The in-cylinder swirl level only has a limited influence on the final lift-off length position. Increasing the inter-jet spacing is found to reduce the magnitude of the cycle-to-cycle variations of the lift-off length.
Technical Paper

Light Commercial Vehicle ADAS-Oriented Modelling: An Optimization-Based Conversion Tool from Multibody to Real-Time Vehicle Dynamics Model

2023-04-11
2023-01-0908
In the last few years, the number of Advanced Driver Assistance Systems (ADAS) on road vehicles has been increased with the aim of dramatically reducing road accidents. Therefore, the OEMs need to integrate and test these systems, to comply with the safety regulations. To lower the development cost, instead of experimental testing, many virtual simulation scenarios need to be tested for ADAS validation. The classic multibody vehicle approach, normally used to design and optimize vehicle dynamics performance, is not always suitable to cope with these new tasks; therefore, real-time lumped-parameter vehicle models implementation becomes more and more necessary. This paper aims at providing a methodology to convert experimentally validated light commercial vehicles (LCV) multibody models (MBM) into real-time lumped-parameter models (RTM).
Technical Paper

Light Commercial Vehicle with Locking Differential

2013-10-07
2013-36-0467
In the light commercial vehicles and other wheeled vehicles, an open differential is a device that allows each driven wheel to rotate in different speeds during a curve or in limited grip conditions. On the other hand, when one of the wheels loses the grip the differential will direct all the torque available to the wheel that is spinning making the vehicle get stuck. In certain applications, such as electrical power line maintenance in rural areas requires a larger capacity drive vehicles due to low friction terrain. To comply with this application requirement was developed the locking differential speed sensitive that pulls both wheels at the same time offering full locking axle and increasing the traction capacity of the vehicle. The system automatically unlocks the wheel with higher speed when the speed is different between them as happened in a curve.
Journal Article

Light Duty Truck Rear Axle Thermal Modeling

2020-04-14
2020-01-1388
More stringent Federal emission regulations and fuel economy requirements have driven the automotive industry towards more sophisticated vehicle thermal management systems to best utilize the waste heat and improve driveline efficiency. The final drive unit in light and heavy duty trucks usually consists of geared transmission and differential housed in a lubricated axle. The automotive rear axle is one of the major sources of power loss in the driveline due to gear friction, churning and bearing loss affecting vehicle fuel economy. These losses vary significantly with lubricant viscosity. Also the temperatures of the lubricant are critical to the overall axle performance in terms of power losses, fatigue life and wear. In this paper, a methodology for modeling thermal behavior of automotive rear axle with heat exchanger is presented. The proposed model can be used to predict the axle lubricant temperature rise.
Technical Paper

Light Truck Crash Test Results

1987-09-01
871096
This paper is a status report of the New Car Assessment Program's data on light trucks. In 1983, the New Car Assessment Program (NCAP) began including light trucks in its testing program. To date, data on light trucks, vans, and multipurpose vehicles are inadequate to draw conclusions. Because of consumer demands for crashworthiness information on these vehicles, the National Highway Traffic Safety Administration will continue to expand its NCAP database on these vehicles in subsequent years.
X