Refine Your Search

Search Results

Technical Paper

Infrared Borescopic Evaluation of High-Energy and Long-Duration Ignition Systems for Lean/Dilute Combustion in Heavy-Duty Natural-Gas Engines

2018-04-03
2018-01-1149
Abstract Natural gas (NG) is attractive for heavy-duty (HD) engines for reasons of cost stability, emissions, and fuel security. NG cannot be reliably compression-ignited, but conventional gasoline ignition systems are not optimized for NG and are challenged to ignite mixtures that are lean or diluted with exhaust-gas recirculation (EGR). NG ignition is particularly challenging in large-bore engines, where completing combustion in the available time is more difficult. Using two high-speed infrared (IR) cameras with borescopic access to one cylinder of an HD NG engine, the effect of ignition system on the early flame-kernel development and cycle-to-cycle variability (CCV) was investigated. Imaging in the IR yielded strong signals from water emission lines, which located the flame front and burned-gas regions and obviated image intensifiers. A 9.7-liter, six-cylinder engine was modified to enable exhaust-gas recirculation and to provide optical access.
Technical Paper

Observations of Soot Optical Property Characteristics Using High-Speed, Multiple Wavelength, Extinction Imaging in Heavy-Duty Diesel Sprays

2018-04-03
2018-01-0233
Abstract Soot formation in high-pressure sprays of n-dodecane is quantified under conditions relevant to heavy-duty diesel engines. Sprays are injected from a single-hole diesel injector belonging to the family of Engine Combustion Network (ECN) Spray D injectors. Soot optical thickness and the total soot mass are quantified using a high-speed extinction imaging diagnostic with incident light wavelengths of 623 nm and 850 nm. The total soot mass is derived from the measured optical thickness using a non-dimensional extinction coefficient (ke) based on the Rayleigh-Debye-Gans approximation for fractal aggregates (RDG-FA). In a previous work, a near unity ke ratio was observed for extinction measurements using incident light at 406 nm and 520 nm-suggesting invariance in the complex refractive index (m = n + κi) of soot at these visible wavelengths; however, the present work demonstrates a significant difference in m for measurements with infrared incident light.
Technical Paper

Advanced Combustion for Improved Thermal Efficiency in an Advanced On-Road Heavy Duty Diesel Engine

2018-04-03
2018-01-0237
Abstract For internal combustion engines, the compression ratio (r) is defined as the ratio of volume at bottom dead center to the volume at top dead center and is a fundamental design parameter influencing the thermodynamic operation of the modern combustion engine. Thermodynamic cycle analysis can show that thermal efficiency increases as the compression ratio increases. An increase in the compression ratio changes the cycle such that peak compression pressure and temperatures are increased resulting in subsequent increases in the peak combustion pressure and temperature. Since the average temperature of heat addition is increased in the cycle, the thermal efficiency would theoretically increase as long as both cycles had the same heat rejection processes. These changes in peak pressure and temperature of the cycle must also be evaluated in terms of anticipated increases in engine friction and changes to the combustion duration respectively.
Technical Paper

A Study on Improvement of Sitting Posture Stability for Heavy Truck Drivers

2018-04-03
2018-01-1319
Abstract The driver’s seat in heavy trucks is designed for an upright driving posture with narrow back and cushion angles; thus, the seatback offers very little support. This makes the sitting posture prone to shifting during long trips, leading to loss of comfort and increase in fatigue. Sitting posture stability allows initial posture to be maintained during long drives, and the lack of stability causes fatigue and body pain during the drive. This study confirmed that enhancement of sitting posture stability of the driver’s seat in heavy trucks requires appropriate support from the cushion. The study also analyzed the support characteristics of each part of the cushion, and presented development guidelines of new cushion. Although subjective assessments of sitting posture stability have been performed, this study presented a method for quantitative and efficient assessment of sitting posture stability using the PAM-COMFORT simulation tool and virtual testing.
Technical Paper

Improving Ride Comfort of a Heavy Truck

2018-04-03
2018-01-0135
Abstract Ride comfort is simply defined as the vibration performance of the vehicle which is excited by road surface roughness, generally as the vehicle moves at specific constant velocity over the road profile. Ride comfort was an important index for heavy truck, due to long distance transfer and long time driving. In order to improve the ride comfort of a heavy truck, a detailed model, including flex frame, chassis suspension, cab suspension, powertrain, etc., was built and assembled by MSC.ADAMS software. Simulation and testing data were consistent very well, which showed the correctness of the model. The optimization of chassis and cab suspension including the stiffness of the leafspring, the damping of the shock absorber, etc. was carried out to improve the ride comfort of the vehicle. The ride comfort testing was carried out on the proving ground to verify the effectiveness the optimization results. The testing results shows that the ride comfort has been improved after tuning.
Technical Paper

Challenges for Spark Ignition Engines in Heavy Duty Application: a Review

2018-04-03
2018-01-0907
Abstract Spark Ignition (SI) engines operating on stoichiometric mixtures can employ a simple three-way catalyst as after-treatment to achieve low tailpipe emissions unlike diesel engines. This makes heavy duty (HD) SI engines an attractive proposition for low capital cost and potentially low noise engines, if the power density and efficiency requirement could be met. Specific torque at low speeds is limited in SI engines due to knock. In HD engines, the higher flame travel distances associated with higher bore diameters exacerbates knock due to increased residence time of the end gas. This report reviews the challenges in developing HD SI engines to meet current diesel power density. It also focuses on methods to mitigate them in order to achieve high thermal efficiency while running on stoichiometric condition. High octane renewable fuels are seen as a key enabler to achieve the performance level required in such applications.
Technical Paper

Steering Column Slip Endurance Test & Rig Development

2018-04-03
2018-01-0125
Abstract In the emerging commercial vehicle sector, it is very essential to give a product to customer, which is very reliable and less prone to the failures to make the product successful in the market. In order to make it possible, the product is to be validated to replicate the exact field conditions, where it is going to be operated. Lab testing plays a vital role in reproducing the field conditions in order to reduce the lead time in overall product life cycle development process. This paper deals with the design and fabrication of the steering column slip endurance test rig. This rig is capable of generating wear on the steering column splines coating which predominantly leads to failure of steering column. The data acquired from Proving Ground (PG) was analyzed and block cycles were generated with help of data analyzing tools.
Technical Paper

Simplifications Applied to Simulation of Turbulence Induced by a Side View Mirror of a Full-Scale Truck Using DES

2018-04-03
2018-01-0708
Abstract In this paper, the turbulent flow induced by a production side-view mirror assembled on a full-scale production truck is simulated using a compressible k-ω SST detached eddy simulation (DES) approach -- the improved delayed DES (IDDES). The truck configuration consists of a compartment and a trailer. Due to the large size and geometric complexity of the configuration, some simplifications are applied to the simulation. A purpose of this work is to investigate whether the simplifications are suitable to obtain the reasonable properties of the flow near the side-view mirror. Another objective is to study the aerodynamic performances of the mirror. The configuration is simplified regarding two treatments. The first treatment is to retain the key exterior components of the truck body while removing the small gaps and structures. Furthermore, the trailer is shaped in an apex-truncated square pyramid.
Technical Paper

Investigation and Development of Underbody Aerodynamic Drag Reduction Devices for Trailer Trucks

2018-04-03
2018-01-0707
Abstract It is well known that the underbody region of a tractor-trailer is responsible for up to 30% of the aerodynamic drag. This is the highest drag created by any region of a tractor-trailer. There are a number of underbody drag-reduction devices available on the market but they create a few operational issues, such as low ground clearance and ice collection, which inhibit their mass market appeal. In this paper, a novel concept of an underbody aerodynamic device is developed and investigated. The underbody device is a combination of a ramp and a side skirt; which are optimized simultaneously. In addition, the device is made collapsible to facilitate easy storage when not in use (i.e., city driving). NASA’s Generic Conventional Model (GCM); a 1/8th scale model of a generic class-8 tractor-trailer is used to evaluate and optimize the concept. The GCM allows the concept to be applicable to a wider range of tractor-trailers.
Technical Paper

An Experimental Study of the Impact of Underbody Roughness on the Instantaneous Wake Flow Topology behind a Truck Geometry

2018-04-03
2018-01-0714
Abstract The turbulent wake behind a truck is responsible for a considerable proportion of the total aerodynamic drag. There is evidence to suggest that the underbody flow affects the wake topology, although this interaction is not well understood. Typical truck trailer underbodies are geometrically very complex and have a range of bluff bodies - such as the wheel and axle assembly, structural beams or the secondary fuel tank for refrigerated trucks - attached. These components block the underbody flow and erode its momentum. However, most of the previous studies of the wake flow have used models with clean underbodies. It is thus uncertain whether the wake shapes found by these studies accurately represent the wake topology behind a real truck with a detailed underbody.
Technical Paper

Experimental Investigation of the Aerodynamic Benefits of Truck Platooning

2018-04-03
2018-01-0732
Abstract Lawrence Livermore National Laboratory (LLNL) has conducted a series of scaled wind tunnel tests to investigate the aerodynamic benefits of heavy vehicle platooning and the availability of cooling air for trailing vehicles on two- and three-vehicle platoons. To measure the aerodynamic drag, scale models are mounted onto a LLNL designed splitter plate by means of a low-friction linear bearing and a load cell located within each model trailer. In addition to drag, pressure measurements are made with a pitot probe positioned at the center of each model radiator grill. Particle Image Velocimetry (PIV) and Infrared Thermography (IRT) measurements are used to map the three-dimensional velocity field and flow structures around the vehicles.
Technical Paper

Utilizing spectral analysis to quantify resolution of low frequency behavior in testing commercial vehicles

2018-04-03
2018-01-0747
Abstract Despite the recent broadening of acceptable test methods for certifying aerodynamic performance, there has been little attention on how to determine the time averaging window used for providing mean forces. This is of particular relevance to the assessment of commercial vehicles as they are significantly affected by low-frequency patterns that are hard to predict and vary with different geometry configurations. Published guidelines in the industry suggest that good engineering judgement be used and a qualitative assessment of force histories is adequate. These suggested methods leave the accuracy of the time averaging to the experience and judgement of the user and is highly dependent on the specific characteristics of the benchmark case. Furthermore these methods are not able to quantify the error present due to motions slower than length of the sampled data.
Technical Paper

Ultra-High Speed Fuel Tracer PLIF Imaging in a Heavy-Duty Optical PPC Engine

2018-04-03
2018-01-0904
Abstract In order to meet the requirements in the stringent emission regulations, more and more research work has been focused on homogeneous charge compression ignition (HCCI) and partially premixed combustion (PPC) or partially premixed compression ignition (PCCI) as they have the potential to produce low NOx and soot emissions without adverse effects on engine efficiency. The mixture formation and charge stratification influence the combustion behavior and emissions for PPC/PCCI, significantly. An ultra-high speed burst-mode laser is used to capture the mixture formation process from the start of injection until several CADs after the start of combustion in a single cycle. To the authors’ best knowledge, this is the first time that such a high temporal resolution, i.e. 0.2 CAD, PLIF could be accomplished for imaging of the in-cylinder mixing process. The capability of resolving single cycles allows for the influence of cycle-to-cycle variations to be eliminated.
Technical Paper

Gasoline Compression Ignition Operation of a Heavy-Duty Engine at High Load

2018-04-03
2018-01-0898
Abstract Engine experiments were carried out on a heavy-duty single-cylinder engine to investigate the effects of Gasoline Compression Ignition on emissions and performance of a heavy-duty engine operating at a high load condition. Comparisons between gasoline fueled operation and diesel fueled operation are presented using a single, near top dead center injection. Although the fuel’s cetane numbers are very different, the combustion characteristics of the two fuels at high load are similar, with the gasoline-fueled case showing less than two crank angle degree longer ignition delay. Gasoline operation showed lower soot production at similar levels of NOx, initiating study of the impact of exhaust gas recirculation which spanned a range of NOx levels covering the range from minimal urea dosing to high urea dosing. A conventional soot-NOx tradeoff was found to exist with gasoline as exists with diesel.
Technical Paper

Integrated Exhaust Rocker Arm Lost Motion Compression Release Engine Brake with Novel Reset Mechanism for Heavy Duty Diesel Engines

2018-04-03
2018-01-0381
Abstract A new compression release engine brake system has been developed which utilizes the well-known lost motion idea along with an entirely new valve resetting mechanism. The engine brake is fully integrated into the exhaust rocker arm, making it highly compact. The novel reset mechanism provides a pressure sensing reset timing which optimizes engine brake performance and valve train stress at all engine speeds. Hydraulic system simulation studies were performed to first verify the concept on paper. Once acceptable performance was predicted, physical prototypes were produced. The Cummins ISL 8.9 L engine was chosen as a proof of concept platform due to its availability and its factory engine brake option. The factory engine brake gives a data set for comparison while validating this new technology. All targets for engine brake function were achieved, and a substantial increase in performance was demonstrated.
Technical Paper

A Technical, Environmental and Financial Analysis of Hybrid Buses Used for Public Transport

2018-04-03
2018-01-0424
Abstract This paper presents a technical, financial and environmental analysis of four different hybrid buses operated under Buenos Aires driving conditions. A conventional diesel bus is used as reference and three electric hybrids equipped with different energy storage technologies, Li-Ion, NiMH batteries and double layer capacitors (ultracapacitors), are evaluated, along with a hydraulic hybrid platform which uses high-pressure accumulators as its energy buffer. The operating conditions of the buses are set using real driving GPS data collected from various bus routes within the city. The different vehicle platforms are modeled on AUTONOMIE SA and validated by comparing the obtained fuel consumption results to those reported by local transport authorities and values found in the literature. The embedded energy and CO2 emissions of each platform are estimated using GREET and the total cost of ownership of each vehicle is calculated and compared to that of the conventional bus.
Technical Paper

Sodium Cooling Efficiency in Hollow Valves for Heavy Duty Engines

2018-04-03
2018-01-0368
Abstract As a consequence of the ongoing evolution of engines, where performance is continuously improving and the use of alternative fuels is being adopted by many engine manufacturers, thermal working conditions of the exhaust valves are increasingly critical. In order to better resist the higher temperature levels of the exhaust gases, current development ranges from improvement of the cooling concept for the overall system, new materials for valve set components up to the upgrade of the exhaust manifold material. Change in the design of several valvetrain components due to the increased thermal loads is a logical consequence of this technical evolution process. Hollow exhaust valves filled with Sodium (Na) are a known technology that is widely used in passenger car engines to improve thermal behavior and to avoid the need to change to expensive materials (Ni-base alloys).
Technical Paper

Solid Particle Number and Ash Emissions from Heavy-Duty Natural Gas and Diesel w/SCRF Engines

2018-04-03
2018-01-0362
Abstract Solid and metallic ash particle number (PN) and particulate matter (PM) mass emission measurements were performed on a heavy-duty (HD) on-highway diesel engine and a compressed natural gas (CNG) engine. Measurements were conducted under transient engine operation that included the FTP, WHTC and RMC. Both engines were calibrated to meet CARB ultra low NOX emission target of 0.02 g/hp-hr, a 90% reduction from current emissions limit. The HD diesel engine final exhaust configuration included a number of aftertreatement sub-systems in addition to a selective catalytic reduction filter (SCRF). The stoichiometric CNG engine final configuration included a closed coupled Three Way Catalyst (ccTWC) and an under floor TWC (ufTWC). The aftertreatment systems for both engines were aged for a full useful life (FUL) of 435,000 miles, prior to emissions testing. PM mass emissions from both engines were comparable and well below the US EPA emissions standard.
Technical Paper

A Consolidated Investigation on LPG as an Alternative Fuel for Public Utility Jeepneys

2018-04-03
2018-01-0917
Abstract This paper presents the results of a two-phase Philippine study to determine the actual mileage (km/liter) of in-use diesel and LPG (liquefied petroleum gas or Auto-LPG) public utility jeepneys plying two separate Metro Manila urban routes using both on-road and chassis dynamometer tests. Measured average load factor in on-road tests was 60-70%. Dynamometer tests at 100% load factor utilized drive cycles derived from on-road speed data. A “diesel equivalent mileage” of actual LPG mileage, deemed indicative of LPG “fuel energy conversion efficiency” relative to diesel, was calculated (based solely on fuel heating values and densities) for comparing actual mileage from both fuels. The LPG actual mileage in both on-road and laboratory tests was lower than diesel mileage. In on-road tests, the LPG actual mileage was lower than diesel actual mileage by about the same percentage LPG heating value was lower than diesel’s per liter of fuel.
Technical Paper

Optimization of Heavy Duty Diesel Engine Lubricant and Coolant Pumps for Parasitic Loss Reduction

2018-04-03
2018-01-0980
Abstract As fuel economy becomes increasingly important in all markets, complete engine system optimization is required to meet future standards. In many applications, it is difficult to realize the optimum coolant or lubricant pump without first evaluating different sets of engine hardware and iterating on the flow and pressure requirements. For this study, a Heavy Duty Diesel (HDD) engine was run in a dynamometer test cell with full variability of the production coolant and lubricant pumps. Two test stands were developed to allow the engine coolant and lubricant pumps to be fully mapped during engine operation. The pumps were removed from the engine and powered by electric motors with inline torque meters. Each fluid circuit was instrumented with volume flow meters and pressure measurements at multiple locations. After development of the pump stands, research efforts were focused on hardware changes to reduce coolant and lubricant flow requirements of the HDD engine.
X