Criteria

Display:

Results

Viewing 181 to 210 of 7721
2017-05-10
Technical Paper
2017-01-1928
David Mumford, Dale Goudie, James Saunders
Globally, many jurisdictions are working toward greenhouse gas (GHG) emissions standards for medium- and heavy-duty vehicles that will take effect in the next decade and require GHG reductions of up to 25% from 2017 legislated levels. While diesel engines will require increasingly complex improvements, high pressure direct injection (HPDI) of natural gas can provide GHG reductions of approximately 20% (75% or more with renewable natural gas / bio-methane) while preserving the same power density, torque and performance as diesel. This paper will provide an overview of the improvements in the Westport™ HPDI 2.0 components as well as performance and emissions results demonstrated to-date. The potential and challenges of higher injection pressures will be explored while also investigating sources of and methods to eliminate methane venting on the vehicle.
2017-05-10
Technical Paper
2017-01-1927
Andreas Graef
China’s construction equipment (CE) market has been shrinking since 2011 with only few machinery segments gaining sales in last few years. Most of China’s CE machinery segments are already highly concentrated with few major Chinese CE OEMs contributing the majority of sales volume in each machinery segment. Machinery segments with more advanced technology such as crawler excavators see the rise of Chinese CE OEM competing with their international peers on market shares. Chinese full-liner OEMs are expected to shift their global M&A strategies in light of China’s enforced governmental control of capital outflows and increased scrutiny over the authenticity and compliance of overseas investments. With this market and competitor dynamics in China, the key question for international CE powertrain system and component supplier is how Chinese CE OEM and engine supplier develop and source their key powertrain components in future.
2017-05-10
Technical Paper
2017-01-1932
Thomas Herlitzius
The digital transformation offers Europe tremendous opportunities of more efficient production using Cyber Physical Systems (CPS), which will enable new concepts for future farming systems. The very fast development of information and communication technologies is driving the evolution of mobile machines into cyber-physical systems with virtually no limitations for communication. Automation is the most important trend in the development of agricultural mobile machines due to the open potential of efficiency increases at all levels (machine, process and farm operation). CPS technologies are going to deliver solutions at the system and enterprise level by supporting real time and strategic decisions while enabling much higher system transparency and controllability within the sustainability tri-angle.
2017-05-10
Technical Paper
2017-01-1931
Christian Ballarin, Martin Zeilinger
Due to the continuous increasing highway transport and the decreasing investments into infrastructure a better usage of the installed infrastructure is indispensable. Therefore the operation and interoperation of assistance and telematics systems become more and more necessary. Regarding these facts Highway Pilot was developed at Daimler Trucks. The Highway Pilot System moves the truck highly automated and independent from other road users within the allowed speed range and the required security distance. Daimler Trucks owns diverse permissions in Germany and the USA for testing these technologies on public roads. Next generation is the Highway Pilot Connect System that connects three highly automated driving trucks. The connection is established via Vehicle-to-Vehicle communication (V2V).
2017-05-10
Technical Paper
2017-01-1929
Ludger Frerichs, Steffen Hanke, Sebastian Steinhaus, Lennart Trösken
Along with the European Union’s objective of further reduction of greenhouse gas emissions, manufacturers of agricultural machines want to make their contribution and highlight potential fuel savings. The research project “EKoTech - Efficient fuel use in agricultural technology”, funded by the German Ministry of Agriculture, involves well-known manufacturers and research facilities. The essential objective of this project is to identify savings realized since 1990 and savings potentials until 2030. Further aims are the development of a method and a tool for the evaluation of efficiency measures in process chains and the formulation of recommendations for manufacturers, operators and research facilities. A comprehensive search of fuel consumption and power requirement data of relevant machines and processes provides the database. Additionally typical region-specific operational structures, machine equipment and process chains define model farms.
2017-05-10
Technical Paper
2017-01-1923
Wayne Eckerle, Vivek Sujan, Gary Salemme
Countries around the world are expected to continue to adopt more stringent emissions standards for heavy-duty markets for both oxides of nitrogen (NOx) and greenhouse gases (GHG). While there is uncertainty about the timing and extent of these regulations, it is clear that significant reductions will be required to address urban air pollution and climate change concerns. The rate and pace of technology evolution and how it will affect the energy pathways for commercial transportation and industrial use are dependent on multiple variables such as national energy and environmental policies and public-private partnerships. Although it adds complexity, the engine system has great potential to evolve as it continues to be highly integrated into the super system for which it is producing power. This paper examines the potential opportunities and challenges for engine manufacturers to continue to be the supplier of power to vehicles and equipment of the future.
2017-05-10
Technical Paper
2017-01-1924
Hagen Adam
Abstract No abstract available.
2017-05-10
Technical Paper
2017-01-1922
Wolfgang Burget
Highly diversified market needs, non-harmonized regulations and new technological trends in future construction machinery industry will challenge OEMs in defining their appropriate development strategies. Main trends like “efficiency”, “safety/security” as well as “connectivity” are considered as important driving forces in future product - and customer service - developments. Some examples are given for the above mentioned trends. Chances and related risks of such development trends are considered as well.
2017-05-10
Technical Paper
2017-01-1921
Ron Borsboom
This paper discusses the challenges and opportunities in the truck industry and especially the efforts of DAF Trucks N.V. in improving traffic safety and the environmental impact related to trucks. Proposals regarding legislation, new technologies and the approach to be followed, in order to reach the desired goals, are presented. Various new technologies investigated in DAF Trucks N.V., like platooning are explained, to show the open perspective of the company towards finding solutions and the commitment to invest in this effort. As a significant message this paper wants to convey, is the need for all the stakeholders to work together in an joint effort to achieve the best possible results.
2017-05-10
Technical Paper
2017-01-1936
Ulrich Fass, Jenny Elfsberg
Abstract No abstract available.
2017-05-10
Technical Paper
2017-01-1934
Takashi Sasaki
In Japan, environmentally-friendly vehicles, such as HV, PHV, EV, and FCV, have been researched and developed as solutions to the energy and environmental problems, but none of these vehicles have been fully satisfactory in all respects, such as environmental performance, vehicle performance, and adaptability to existing infrastructure. Hino Motors, Ltd. launched a hybrid bus in 1992 as a pioneer in hybrid commercial vehicles and has sold more than 10,000 hybrid buses and trucks. An electric-powered minibus designed under the concept of short travel distance and high charging frequency was developed to make use of Hino’s abundant experience in the development of HV and the past market results it has achieved. Since 2012, these buses have operated in three areas as community buses.
2017-05-10
Technical Paper
2017-01-1935
Florian Rahe, Rainer Resch
In this paper, we present our views on the electrification of agricultural machinery, especially electrification with voltages higher than 12 volts - even up to 700 volts. Requirements on modern agricultural machinery have changed drastically in recent decades. Electronic controls became standard - resulting in increased electrical power requirements. At Agritechnica 2007, John Deere and Rauch presented a tractor-implement combination using 400V AC, which prompted avid further development of this technology in agriculture. We will present our experiences with the electrification of some implements. For each development, we had a different focus and the results will be discussed. Furthermore, we will provide a short overview of possible efficiency improvements thanks to electrification and an analysis of the demands. A conclusion with an outlook on the real requirements and upcoming solutions from our perspective will complete this paper.
2017-05-10
Technical Paper
2017-01-1933
Werner Seifried
Concerning the limitation of greenhouse gases, the Kyoto protocol in 1997defined the first hard facts. A steady increase in the number of participating states as well as a rigorous focus on emission limits - even if some important countries did not sign or withdraw from the protocol - led to high pressure on existing technologies. The presentation therefore will start by discussing the four pillars of possible CO2 reduction options and will lead to the question why there is a correlation to assistance systems on hydraulic excavators. Finally innovative excavator assistance systems and their support to the objectives on CO2 reduction will be presented.
2017-05-10
Technical Paper
2017-01-1937
Heimo Schreier, Burak Aliefendioglu, Roger Perthen, Jürgen Tochtermann
Local air pollution, noise emissions as well as global CO2 reduction and public pressure drive the need for zero emission transport solutions in urban areas. OEMs are currently developing battery electric vehicles with the focus to provide emission free urban transportation combined with lowest total cost of ownership and consequently a positive business case for the end customers. Thereby the main challenges are electric range, product cost, system weight, vehicle packaging and durability. Hence they are the main drivers in current developments. In this paper AVL describes two of its truck and bus solutions - a modular battery concept as well as a concept for an integrated electric axle. Based on the vehicle requirements concept designs for both systems are presented.
2017-04-11
Journal Article
2017-01-9178
Arash E. Risseh, Hans-Peter Nee, Olof Erlandsson, Klas Brinkfeldt, Arnaud Contet, Fabian Frobenius lng, Gerd Gaiser, Ali Saramat, Thomas Skare, Simon Nee, Jan Dellrud
The European Union’s 2020 target aims to be producing 20 % of its energy from renewable sources by 2020, to achieve a 20 % reduction in greenhouse gas emissions and a 20 % improvement in energy efficiency compared to 1990 levels. To reach these goals, the energy consumption has to decrease which results in reduction of the emissions. The transport sector is the second largest energy consumer in the EU, responsible for 25 % of the emissions of greenhouse gases caused by the low efficiency (<40 %) of combustion engines. Much work has been done to improve that efficiency but there is still a large amount of fuel energy that converts to heat and escapes to the ambient atmosphere through the exhaust system. Taking advantage of thermoelectricity, the heat can be recovered, improving the fuel economy.
2017-04-11
Journal Article
2017-01-9177
N. Obuli Karthikeyan, R. Dinesh Kumar, V. Srinivasa Chandra, Vela Murali
Abstract In the modern automotive sector, durability and reliability are the most common terms. Customers are expecting a highly reliable product but at low cost. Any product that fails within its useful life leads to customer dissatisfaction and affects the reputation of the OEM. To eradicate this, all automotive components undergo stringent validation protocol, either in proving ground or in lab. This paper details on developing an accelerated lab test methodology for steering gearbox bracket using fatigue damage and reliability correlation by simulating field failure. Initially, potential failure causes for steering gearbox bracket were analyzed. Road load data was then acquired at proving ground and customer site to evaluate the cumulative fatigue damage on the steering gearbox bracket. To simulate the field failure, lab test facility was developed, reproducing similar boundary conditions as in vehicle.
2017-04-11
Journal Article
2017-01-9176
Jitesh Shukla, A Grinspan, Jeyanthi subramanian
Abstract Lifting axles are auxiliary axles that provide increased load carrying capacity in heavy commercial vehicles. Lift axle gives better fuel efficiency as well as it reduces the operational costs by means of increasing the loading carrying capacity. These axles are raised when the vehicle is in unloaded condition, thus increasing the traction on remaining wheels and reducing the tire wear which in turn lower down the maintenance cost of the vehicle. Lifting height and force requires to lift the whole mechanism and are two main considerable factors to design the lifting axle mechanism. Although in India currently, the use of lift mechanism of single tire with continuous axle is more common. But in the case of pusher axle, continuous axle is unable to lift more after certain height because of the draft angle of the propeller shaft, and single tire axle which has less load carrying capacity up to 6T (Tons).
2017-03-28
Technical Paper
2017-01-0181
Benny Johnson William, Agathaman Selvaraj, Manjeet Singh Rammurthy, Manikandan Rajaraman, V. Srinivasa Chandra
Abstract The modern day automobile customers’ expectations are sky-high. The automotive manufacturers need to provide sophisticated, cost-effective comfort to stay in this competitive world. Air conditioning is one of the major features which provides a better comfort but also adds up to the increase in operating fuel cost of vehicle. According to the sources the efficiency of internal combustion engine is 30% and 70% of energy is wasted to atmosphere. The current Air conditioners in automobiles use Vapour compression system (VCS) which utilizes a portion of shaft power of the engine at its input; this in turn reduces the brake power output and increases the specific fuel consumption (SFC) of the engine. With the current depletion rate of fossil fuels, it is necessary to conserve the available resources and use it effectively which also contributes to maintain a good balance in greenhouse effect thus protecting the environment.
2017-03-28
Technical Paper
2017-01-0158
Masaaki Nakamura, Koichi Machida, Kiyohiro Shimokawa
Abstract A diesel engine is advantageous in its high thermal efficiency, however it still wastes about 50% of total input energy to exhaust and cooling losses. A feasibility study of thermoacoustic refrigerator was carried out as one of the means to recuperate waste heat. The thermoacoustic refrigerator prototyped for this study showed a capability to achieve cooling temperature lower than -20 degree C, which indicated that the system has a potential to be used in refrigerator trucks not only for cargo compartment cooling but also for cabin cooling.
2017-03-28
Technical Paper
2017-01-0150
Ankit Kumar Shukla, Raj Dhami, Aashish Bhargava, Sanjay Tiwari
Abstract In the current landscape of commercial vehicle industry, fuel economy is one of the major parameter for fleet owner’s profitability as well as greenhouse gasses emission. Less fuel efficiency results in more fuel consumption; use of conventional fuel in engines also makes environment polluted. The rapid growth in fuel prices has led to the demand for technologies that can improve the fuel efficiency of the vehicle. Phase change material (PCMs) for Thermal energy storage system (TES) is one of the specific technologies that not only can conserve energy to a large extent but also can reduce emission as well as the dependency on convention fuel. There is a great variety of PCMs that can be used for the extensive range of temperatures, making them attractive in a number of applications in automobiles.
2017-03-28
Technical Paper
2017-01-0135
Jose Grande, Julio Abraham Carrera, Manuel Dieguez Sr
Abstract Exhaust Gas Recirculation (EGR) is an effective technique for reducing NOx emissions in order to achieve the ever more stringent emissions standards. This system is widely used in commercial vehicle engines in which thermal loads and durability are a critical issue. In addition, the development deadlines of the new engine generations are being considerably reduced, especially for validation test phase in which customers usually require robust parts for engine validation in the first stages of the project. Some of the most critical issues in this initial phases of program development are heavy boiling and thermal fatigue. Consequently it has been necessary to develop a procedure for designing EGR coolers that are sufficiently robust against heavy boiling and thermal fatigue in a short period of time, even when the engine calibration is not finished and the working conditions of the EGR system are not completely defined.
2017-03-28
Technical Paper
2017-01-0137
Akira Ando, Koichi Hamashima, Shinji Kato, Noriyuki Tomita, Takahiro Uejima
Abstract In respect to the present large refrigerator trucks, sub-engine type is the main product, but the basic structure does not change greatly since the introduction for around 50 years. A sub-engine type uses an industrial engine to drive the compressor, and the environmental correspondence such as the fuel consumption, the emission is late remarkably. In addition, most of trucks carry the truck equipment including the refrigerator which consumes fuel about 20% of whole vehicle. Focusing on this point, the following are the reports about the system development plan for fuel consumption reduction of the large size refrigerator truck. New concept is to utilize electrical power from HV system to power the electric-driven refrigerator. We have developed a fully electric-driven refrigerator system, which uses regenerated energy that is dedicated for our refrigerator system.
2017-03-28
Journal Article
2017-01-0133
Bin Xu, Adamu Yebi, Simona Onori, Zoran Filipi, Xiaobing Liu, John Shutty, Paul Anschel, Mark Hoffman
Abstract This paper presents the transient power optimization of an organic Rankine cycle waste heat recovery (ORC-WHR) system operating on a heavy-duty diesel (HDD). The optimization process is carried on an experimentally validated, physics-based, high fidelity ORC-WHR model, which consists of parallel tail pipe and EGR evaporators, a high pressure working fluid pump, a turbine expander, etc. Three different ORC-WHR mixed vapor temperature (MVT) operational strategies are evaluated to optimize the ORC system net power: (i) constant MVT; (ii) constant superheat temperature; (iii) fuzzy logic superheat temperature based on waste power level. Transient engine conditions are considered in the optimization. Optimization results reveal that adaptation of the vapor temperature setpoint based on evaporation pressure strategy (ii) provides 1.1% mean net power (MNP) improvement relative to a fixed setpoint strategy (i).
2017-03-28
Technical Paper
2017-01-0560
Mateusz Pucilowski, Mehdi Jangi, Sam Shamun, Changle Li, Martin Tuner, Xue-Song Bai
Abstract Methanol as an alternative fuel in internal combustion engines has an advantage in decreasing emissions of greenhouse gases and soot. Hence, developing of a high performance internal combustion engine operating with methanol has attracted the attention in industry and academic research community. This paper presents a numerical study of methanol combustion at different start-of-injection (SOI) in a direct injection compression ignition (DICI) engine supported by experimental studies. The aim is to investigate the combustion behavior of methanol with single and double injection at close to top-dead-center (TDC) conditions. The experimental engine is a modified version of a heavy duty D13 Scania engine. URANS simulations are performed for various injection timings with delayed SOI towards TDC, aiming at analyzing the characteristics of partially premixed combustion (PPC).
2017-03-28
Journal Article
2017-01-0578
Pinaki Pal, Daniel Probst, Yuanjiang Pei, Yu Zhang, Michael Traver, David Cleary, Sibendu Som
Abstract Fuels in the gasoline auto-ignition range (Research Octane Number (RON) > 60) have been demonstrated to be effective alternatives to diesel fuel in compression ignition engines. Such fuels allow more time for mixing with oxygen before combustion starts, owing to longer ignition delay. Moreover, by controlling fuel injection timing, it can be ensured that the in-cylinder mixture is “premixed enough” before combustion occurs to prevent soot formation while remaining “sufficiently inhomogeneous” in order to avoid excessive heat release rates. Gasoline compression ignition (GCI) has the potential to offer diesel-like efficiency at a lower cost and can be achieved with fuels such as low-octane straight run gasoline which require significantly less processing in the refinery compared to today’s fuels.
2017-03-28
Journal Article
2017-01-0748
Zhenkan Wang, Sara Lonn, Alexios Matamis, Oivind Andersson, Martin Tuner, Marcus Alden, Mattias Richter
Abstract In a previous study, in order to investigate the effect of charge stratification on combustion behavior such as combustion efficiency and combustion phasing which also largely affects the emissions, an experiment was conducted in a heavy-duty compression ignition (CI) metal engine. The engine behavior and emission characteristics were studied in the transition from HCCI mode to PPC mode by varying the start of injection (SOI) timing. To gain more detailed information of the mixing process, in-cylinder laser diagnostic measurements, namely fuel-tracer planar laser induced fluorescence (PLIF) imaging, were conducted in an optical version of the heavy-duty CI engine mentioned above. To the authors’ best knowledge, this is the first time to perform fuel-tracer PLIF measurements in an optical engine with a close to production bowl in piston combustion chamber, under transition conditions from HCCI to PPC mode.
2017-03-28
Technical Paper
2017-01-0753
Marcus Olof Lundgren, Zhenkan Wang, Alexios Matamis, Oivind Andersson, Mattias Richter, Martin Tuner, Marcus Alden, Andersson Arne
Abstract Gasoline partially premixed combustion (PPC) has shown potential in terms of high efficiency with low emissions of oxides of nitrogen (NOx) and soot. Despite these benefits, emissions of unburned hydrocarbons (UHC) and carbon monoxide (CO) are the main shortcomings of the concept. These are caused, among other things, by overlean zones near the injector tip and injector dribble. Previous diesel low temperature combustion (LTC) research has demonstrated post injections to be an effective strategy to mitigate these emissions. The main objective of this work is to investigate the impact of post injections on CO and UHC emissions in a quiescent (non-swirling) combustion system. A blend of primary reference fuels, PRF87, having properties similar to US pump gasoline was used at PPC conditions in a heavy duty optical engine. The start of the main injection was maintained constant. Dwell and mass repartition between the main and post injections were varied to evaluate their effect.
2017-03-28
Technical Paper
2017-01-0751
Praveen Kumar, Yu Zhang, Michael Traver, David Cleary
Abstract In this study a detailed 1-D engine system model coupled with 3-D computational fluid dynamics (CFD) analysis was used to investigate the air system design requirements for a heavy duty diesel engine operating with low reactivity gasoline-like fuel (RON70) under partially premixed combustion (PPC) conditions. The production engine used as the baseline has a geometric compression ratio (CR) of 17.3 and the air system hardware consists of a 1-stage variable geometry turbine (VGT) with a high pressure exhaust gas recirculation (HP-EGR) loop. The analysis was conducted at six engine operating points selected from the heavy-duty supplemental emissions test (SET) cycle, i.e., A75, A100, B25, B50, B75, and C100.
2017-03-28
Technical Paper
2017-01-0756
Zhenkuo Wu, Christopher Rutland, Zhiyu Han
Abstract Natural gas is a promising alternative fuel for internal combustion engines due to its rich reserves and low price, as well as good physical and chemical properties. Its low carbon structure and high octane number are beneficial for CO2 reduction and knock mitigation, respectively. Diesel and natural gas dual fuel combustion is a viable pathway to utilize natural gas in diesel engines. To achieve high efficiency and low emission combustion in a practical diesel engine over a wide range of operating conditions, understanding the performance responses to engine system parameter variations is needed. The controllability of two combustion strategies, diesel pilot ignition (DPI) and single injection reactivity controlled compression ignition (RCCI), were evaluated using the multi-dimension CFD simulation in this paper.
2017-03-28
Technical Paper
2017-01-0694
Tae Joong Wang, Jong Yoon Lee, Seung Kwon Hwang, Ja Yun Cho, Jeong Keun Park, Woong Gun Lee, Tae Sub Kim, Sang Won Jeong, Tae Kuk Kim
Abstract Doosan Infracore Corporation has developed the combustion system of a brand-new DX12 heavy-duty diesel engine equipped for 38 ~ 50 tonnage excavators and 4.2 ~ 4.5 m3 bucket-size wheel loaders which are mainly targeted to emerging countries. A variety of advanced combustion technologies were incorporated in the design of the DX12 engine to meet Tier3 emission legislation even with a mechanically controlled fuel injection equipment while ensuring around 2 % improvement in fuel consumption as well as over 8 % increase in rated power than its Tier2 predecessor. Mechanical-type diesel engine has a couple of significant advantages especially in terms of cost and maintenance compared to electronic-type counterpart. In addition, mechanical fuel system is better able to tolerate a low fuel quality which is potentially possible in emerging countries.
Viewing 181 to 210 of 7721