Browse Publications Technical Papers 2000-01-1238
2000-03-06

Thermal Stresses Induced by Knocking Combustion in Spark-Ignition Engines 2000-01-1238

Knocking combustion severely limits the performance and life of spark-ignition engines. Knock damage typically involves surface erosion of pistons and heads, which is thought to result from a combination of shockwave pressure and thermal stresses. This work investigates the contribution of thermal stresses to knock-induced erosion damage by modelling the temperature profile within the walls, using existing thin-film thermocouple data and 1-dimensional transient heat transfer relationships. The temperature profile is then used to establish the thermal stresses through the wall (of the piston or cylinder head). Results demonstrate that knocking combustion causes thermal stresses between 2 to 3 times greater than that of non-knocking combustion. For knocking conditions, tensile and compressive stresses exceed 20 MPa and 90 MPa respectively, with the maximum tensile stresses occurring about 1mm below the hot surface and the maximum compressive stresses at the hot surface. Due to combination of material properties, cast iron surfaces are shown to produce significantly lower thermal stresses than aluminium alloys. A shear stress cycle reversal is also identified which would play a significant role in the surface destruction process. This research sheds new light on the knock-erosion process by revealing the importance of thermal stresses on the surface damage process.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Flame Quenching in the Micro-Chamber Passages of I .C. Engines with Regular-Symmetric Sonex Piston Geometry

2001-28-0002

View Details

TECHNICAL PAPER

Comparison Between Single-Step and Two-Step Chemistry in a Compression Ignition Free Piston Engine

2000-01-2937

View Details

TECHNICAL PAPER

Analysis of Tumble and Swirl Motions in a Four-Valve SI Engine

2001-01-3555

View Details

X