Browse Publications Technical Papers 2001-01-1451
2001-04-30

Vibrational Power Flow and Its Application to a Passenger Car for Identification of Vibration Transmission Path 2001-01-1451

Reduction of structure-borne noise in the compartment of a car is an important task in automotive engineering. Transfer path analysis using the vibroacoustic reciprocity technique or multiple path decomposition method has generally been used for structure-borne noise path analysis. These methods are useful for solving a particular problem, but they do not quantify the effectiveness of vibration isolation of each isolator of a vehicle. To quantify the effectiveness of vibration isolation, vibrational power flow has been used for a simple isolation system or a laboratory-based isolation system. It is often difficult to apply the vibrational power flow technique to a complex isolation system like a car. In this paper, a simple equation is derived for calculation of the vibrational power flow of an isolation system with multiple isolators such as a car. It is successfully applied not only to quantifying the relative contributions of eighteen isolators, but also to reducing the structure-borne noise of a passenger car. According to the results, the main contributor of the eighteen isolators is the rear roll mount of an engine. The reduced structure-borne noise level is about 5dBA.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Measurement of Transmission Rattle Sensitivity and Calculation of Driveline Torsional Vibration for Gear Rattle Analysis

2005-01-1785

View Details

TECHNICAL PAPER

Damping Mass Effects on Panel Sound Transmission Loss

2011-01-1633

View Details

TECHNICAL PAPER

Practical Methods for Reducing Hydraulic Noise

780757

View Details

X