Browse Publications Technical Papers 2001-01-2347
2001-07-09

Life Support Applications of TCM-FC Technology 2001-01-2347

Thermo-chemical-mechanical (TCM) feedstock conversion (FC) systems originally developed for high temperature conversion of domestic solid feedstock or blends to useful liquid and gaseous fuels are examined for advanced life support (ALS) applications in spacecraft. Recently, exploratory investigations with these TCM-FC systems to use or sequester CO2 have led also to a focus on the production of useful chemicals and chars (activated carbon, humates, CO2 scrubbers, chelating and detoxifying agents, etc). TCM systems can process solid blends with catalysts, adsorbants, reactants, carbon dioxide, steam, air, oxygen, natural gas and liquids. This study considers applications of CCTL’s laboratory scale TCM-FCs for the conversion of the solid waste into sterile and useful gases, liquids or chars on long space missions. TCM units are extrusion systems, and are more adaptable to zero gravity than fluidized bed systems or other systems that rely on gravity. The fact that TCM systems can process solid waste in minutes whereas biochemical conversion requires weeks should be advantageous when time is important. Unfortunately the current lack of understanding of the fundamental pyrolysis processes of biomass or coal combustion or gasification/liquification is a major impediment to the design of optimum thermo-chemical systems. This paper seeks systematics in the yields of products from the pyrolysis of materials consisting mainly of carbon, hydrogen and oxygen. The intent is to provide a broad base that could support many applications including ALS systems.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
X