Browse Publications Technical Papers 2003-01-1735
2003-05-05

Powerplant Block-Crank Dynamic Interaction and Radiated Noise Prediction 2003-01-1735

This paper discusses flexible, multi-body, coupled dynamic simulation of a crankshaft system acting upon a power plant structure that includes an engine block, cylinder heads, oil pan, crank train (i.e., crankshaft, connecting rods, bearings etc.) and transmission. The simulation is conducted using AVL/EXCITE [1]. Engine loads are first predicted, and then used to compute radiated noise from the engine assembly. Radiated noise level is computed by sweeping the excitation frequency through a range associated with the normal operating RPM of the engine. The results of the radiated noise computation are plotted on a “3D” Campbell plot diagram. The effects of different crankshaft materials is evaluated by imposing steel and cast iron material properties on the analysis model. A design of experiment (DOE) study is also performed to investigate the effects of main and rod bearing clearance, damper, and flexplate design on overall engine radiated sound power.
This unique tool, used in the early and middle phases of design, is helpful in selecting engine components and crank train system parameters to produce better powertrain NVH performance.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Evaluating Engine Design for Low Noise Using Dynamic Structural Modeling

820435

View Details

TECHNICAL PAPER

Saturn DOHC and SOHC Four Cylinder Engines

910676

View Details

TECHNICAL PAPER

Applications of Friction Algorithms for Rapid Engine Concept Assessments

1999-01-0558

View Details

X