Browse Publications Technical Papers 2003-01-2270
2003-06-23

An Integrated Mathematical Model of PEM Fuel Cells Propulsion Systems for Automotive Applications 2003-01-2270

Fuel cells are widely accepted to be the alternative powertrain with the highest potential to compete with the internal combustion engine for a mean-long future sustainable prospective for passenger mobility: Proton Exchange Membrane Fuel Cells (PEMFC) seem to be the most promising technology.
Anyway, the final goal is still far to be reached, since often the great potential advantages connected with fuel cells are not completely obtained, due to the difficulties encountered in component design and optimization. Moreover, H2 availability still appears to be one of the most important limitations.
Taking the lead by these considerations the authors derived a physically consistent integrated mathematical model of a PEM propulsion system: the model is fully modular and is aimed both to gain a deeper insight of the complex chemical and thermo-fluid-dynamical processes involved, and to the development of control strategies for the propulsion system and all its auxiliaries.
Here the model is presented and described in its main features: a validation of some of the sub-systems is also presented basing on experimental data available in literature.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
JOURNAL ARTICLE

Online Estimation of Membrane Water Content in Vehicular PEMFC by Complex Morlet Wavelet Transformations

2020-01-2255

View Details

TECHNICAL PAPER

Simulation of Energy Conversion in Advanced Automotive Vehicles

2001-01-3341

View Details

TECHNICAL PAPER

UK ELECTRIC VEHICLE RANGE TESTING AND EFFICIENCY MAPS

2011-39-7224

View Details

X