Browse Publications Technical Papers 2007-01-3308
2007-09-24

Numerical Simulation of Ice Formation on a Helicopter Fuselage 2007-01-3308

Over the past few years, we have developed a unique approach to simulate aircraft icing numerically; we call this method morphogenetic modelling. Previously, we developed a successful two-dimensional version of the model; the objective of our present research is to show that the morphogenetic modelling approach can be extended to three-dimensional in-flight icing. In this paper, we focus on the simulation of three-dimensional, discrete rime structures forming on the fuselage of a helicopter. The numerical model consists of three components: an airflow solver, a drop trajectory solver, and a morphogenetic ice growth model. The velocity field of the flow is computed using the Euler equations, while the drop trajectories are computed using a Lagrangian approach. Computation of drop impact locations determines the local collision efficiency distribution. The morphogenetic model deals with the processes occurring on the impinging surface. Depending on atmospheric conditions, impinging drops may freeze instantly or they may move along the surface before freezing. By building the ice accretion one particle at a time, the morphogenetic model simulates the time evolution of the accretion shape in a natural way that mimics real world behaviour.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

LEWICE 2.2 Capabilities and Thermal Validation

2003-01-2134

View Details

TECHNICAL PAPER

Aircraft Landing Gear Dynamics Present and Future

931400

View Details

TECHNICAL PAPER

Experimental Processing of Methodical Questions of Modeling the Atmospheric Cloud Containing Ice Crystals and Mixed Phase

2019-01-1922

View Details

X