Browse Publications Technical Papers 2007-01-3984
2007-10-29

Aged DOC is a Net Consumer of NO2: Analyses of Vehicle, Engine-dynamometer and Reactor Data 2007-01-3984

A typical diesel After-Treatment (AT) system to meet 2010 North American regulations consists of a Diesel Oxidation Catalyst (DOC) for oxidizing Hydrocarbons (HCs) and Carbon Monoxide (CO), followed by a Selective Catalytic Reduction (SCR) catalyst for NOx reduction, and a diesel particulate filter. DOCs are also used to oxidize NO in the exhaust to NO2 that substantially improves low-temperature SCR NOx reduction performance. Vehicle and engine dynamometer data under typical operating conditions show (1) engine-out NO2/NOx can be as high as 40%, (2) DOC can reduce NO2 to NO in the presence of reductants, and (3) an aged DOC with a low CO/HC conversion can be a net consumer of NO2 over a wide range of temperatures and space velocities. Flow reactor experiments simulating diesel exhaust conditions show that DOC-out NO2 is independent of the inlet NO2/NOx in the feed. NO2 in the feed appears to be reduced to NO prior to the oxidation of NO to NO2 which takes place when most of the reductants have been consumed. Flow reactor data also show that (1) NO2 passes through the DOC unreacted in the absence of reductants, (2) NO2 reduction may happen at the leading edge of the DOC, and hence may not be as space velocity (catalyst length) dependent as the subsequent NO oxidation, and, (3) both CO and HC individually are capable of reducing NO2; however, HCs start reducing NO2 at a higher temperature. Thus, AT strategies (like an upstream HC trap) that limit only one of the reductant entering the DOC may not be able to minimize NO2 loss across the DOC, and engine operating strategies that generate NO2 to aid SCR NOx reduction may not be useful as long as the exhaust passes through a DOC upstream of an SCR in the presence of reductants.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Experimental and Computational Study of DOC on CSF for Heavy Duty Diesel Applications

2019-01-0586

View Details

TECHNICAL PAPER

Advanced NOx Aftertreatment System Performance Following 150 LNT Desulfation Events

2008-01-1541

View Details

TECHNICAL PAPER

NOx and PM Reduction Using Combined SCR and DPF Technology in Heavy Duty Diesel Applications

2005-01-3548

View Details

X