Browse Publications Technical Papers 2009-01-0797
2009-04-20

Three-Point Bending Crash Performance of Advanced High Strength Steels 2009-01-0797

Drop tower crash tests in a three-point bending configuration were carried out on spot welded box sections, adhesive bonded box sections, and laser welded cylindrical tubes made from a variety of advanced high strength steels. In the tests, a 147-kg indenter with a 28-cm diameter impacts the specimen at approximately 6 m/s, and the bending loads and energy absorption are determined. The results show that the maximum bending loads best correlate to the product of yield strength and thickness-squared, while the energy absorbed over 10-cm displacement best correlates to ultimate tensile strength times thickness-squared. As such, higher strength steels can be used to improve crash performance without increasing weight or to maintain crash performance with weight reduction. Other significant findings of the study are as follows. Bake hardening alone may improve bending crash performance slightly, while cold rolling and baking does not. Compared to the box section geometry, the cylindrical tubes have similar maximum bending loads and higher energy absorption at 10-cm displacement. Finally, purely adhesive bonding appears to be better suited for hot-dip galvanize (GI) than for hot-dip galvanneal (GA) coated sheet steels.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Achieving Light-Weight Design of Automotive Bodies with Advanced High Strength Steels via Structural Optimization

2009-01-0795

View Details

TECHNICAL PAPER

Resistance Spot Welding Evaluation of Transformation Induced Plasticity 780 (TRIP780) Steel for Automotive Body Structural Applications

2009-01-0805

View Details

JOURNAL ARTICLE

Experimental Analysis of Die Wear in Sheet Metal Forming

2009-01-1171

View Details

X