Browse Publications Technical Papers 2009-01-0861
2009-04-20

Modeling the Cooling Characteristics of a Disk Brake on an Inertia Dynamometer, Using Combined Fluid Flow and Thermal Simulation 2009-01-0861

For automotive disk brake systems, convective cooling from the rotor to surrounding airflow is an important phenomenon, impacting the rotor and friction material operating temperatures and thereby influencing friction behavior, brake pedal response, and long-term durability characteristics. Many different rotor geometries and vent patterns have been proposed in the industry, however most performance evaluation and design optimization is still done empirically through on-vehicle testing or by using a test bench such as a brake dynamometer. Existing simulations of rotor airflow performance typically do not consider the installed condition with caliper, splash shield, and knuckle [1,2], or do not combine airflow and heat transfer characteristics. This paper will present a simulation model of a disk brake assembly installed on an inertia brake dynamometer, using CFD modeling coupled with thermal loading and heat transfer analysis. Correlation with physical test is demonstrated across different heat load, rotation rate, and airflow conditions. Model validation and data visualization methods are also discussed, and future steps to improve and utilize the modeling method are proposed.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
JOURNAL ARTICLE

Convective Heat Transfer Optimization of Automotive Brake Discs

2009-01-0859

View Details

TECHNICAL PAPER

Analysis of Air Flow and Heat Dissipation from a High Performance GT Car Front Brake

2008-01-0820

View Details

TECHNICAL PAPER

Numerical Study of Brake Disc Cooling Accounting for Both Aerodynamic Drag Force and Cooling Efficiency

2001-01-0948

View Details

X