Browse Publications Technical Papers 2010-01-2185
2010-10-25

Modeling Pressure Oscillations under Knocking Conditions: A Partial Differential Wave Equation Approach 2010-01-2185

In this work the authors present a model to simulate the in-cylinder pressure oscillations due to knock. Pressure oscillations are predicted by the explicit integration of a Partial Differential Wave Equation (PDWE) similar, in its structure, to the so-called “Equation of Telegraphy”. This equation differs mainly from the classical wave formulation for the presence of a loss term. The general solution of such equation is obtained by the Fourier method of variables separation. The integration space is a cylindrical acoustic cavity whose volume is evaluated at the knock onset. The integration constants are derived from the boundary and initial conditions.
A novel approach is proposed to derive the initial condition for the derivative of the oscillating component of pressure. It descends, conceptually, from the integration of the linearized relation between the derivative of pressure versus time and the expansion velocity of burned gas. In practice, the required calculation parameters are evaluated by means of a two zone thermodynamic processing of single, low-pass filtered pressure cycles.
The damping constant, the size and position of the knocking volume of unburned gases at knock onset are the model parameters to be assigned or identified.
The model was validated using a set of experimental data obtained using a four cylinder Direct Injection SI engine at different operating conditions. The position of the unburned gases at knock onset was identified through a mean square optimization process based on hybrid genetic algorithms. Even if a simple cylindrical geometry was adopted to include the mass of unburned gases, simulations reproduced experimental measurements with fairly good accuracy.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

LES of Flow Processes in an SI Engine Using Two Approaches: OpenFoam and PsiPhi

2014-01-1121

View Details

TECHNICAL PAPER

HCCI Combustion Control Using Dual-Fuel Approach: Experimental and Modeling Investigations

2012-01-1117

View Details

TECHNICAL PAPER

Engine Knock, A Renewed Concern In Motorsports - A Literature Review

983026

View Details

X