Browse Publications Technical Papers 2012-01-0436
2012-04-16

The Effects of Hot Air Dilution and an Evaporation Tube (ET) on the Particulate Matter Emissions from a Spray Guided Direct Injection Spark Ignition Engine 2012-01-0436

The emission of nanoparticles from combustion engines has been shown to have a poorly understood impact on the atmospheric environment and human health, and legislation tends to err on the side of caution. Researchers have shown that Gasoline Direct Injection (GDI) engines tend to emit large amounts of small-sized particles compared to diesel engines fitted with Diesel Particulate Filters (DPFs). As a result, the particulate number emission level of GDI engines means that they could face some challenges in meeting the likely EU6 emissions requirement. This paper presents size-resolved particle number emissions measurements from a spray-guided GDI engine and evaluates the performance of an Evaporation Tube (ET). The performance of an Evaporation Tube and hot air dilution system with a 7:1 dilution ratio has been studied, as the EU legislation uses these to exclude volatile particles.
The Evaporation Tube was tested over a range of engine operating conditions with a Spray-Guided Direct Injection engine. The results show that at a temperature of 450°C, the Evaporation Tube had a significantly greater reduction effect on nucleation mode particles compared with accumulation mode particles. With a rich mixture and without dilution air, the transmission efficiency of large size particles was reduced compared to the performance with a stoichiometric mixture. With hot air dilution, the concentration of nucleation mode particles also reduced to a very low level, and at these conditions, the Evaporation Tube had a much smaller effect on the remaining nucleation mode particles. There was also a slight reduction in HC emissions post Evaporation Tube even with rich combustion, especially with the addition of dilution air.
The evaporation tube and hot air dilution were both found to be effective in removing the nucleation mode. Unlike a thermo-denuder there was no active charcoal for removing vaporized hydrocarbons, but with dilution of the sample after the evaporation tube or hot air dilution, there was no evidence of the nucleation mode reforming. In addition it was found that using the accumulation mode defined by the Cambustion DMS500 was also effective at excluding nucleation mode particles, as was a digital filter.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Effect of Common Rail Pressure on the Relationship between Efficiency and Particulate Matter Emissions at NOx Parity

2012-01-0430

View Details

TECHNICAL PAPER

UK Particulate Measurement Programme (PMP): A Near US 2007 Approach to Heavy Duty Diesel Particulate Measurements - Comparison with the Standard European Method

2004-01-1990

View Details

TECHNICAL PAPER

Feasibility of Particulate Mass and Number Measurement with Portable Emission Measurement Systems (PEMS) for In-Use Testing

2011-24-0199

View Details

X