Browse Publications Technical Papers 2013-01-1623
2013-04-08

How to Improve Light Duty Diesel Based on Heavy Duty Diesel Thermodynamic Analysis? 2013-01-1623

The Diesel engine has now become a vital component of the transport sector, in view of its performance in terms of efficiency and therefore CO2 emissions some 25 % less than a traditional gasoline engine, its main competitor.
However, the introduction of more and more stringent regulations on engine emissions (NOx, PM) requires complex after-treatment systems and combustion strategies to decrease pollutant emissions (regeneration strategies, injection strategies, …) with some penalty in fuel consumption. It becomes necessary to find new ways to improve the Diesel efficiency in order to maintain its inherent advantage.
In the present work, we are looking for strategies and technologies to reduce Diesel engine fuel consumption. Based on the observation that large Diesel engines have a better efficiency than the smaller ones, a detailed thermodynamic combustion analysis of one Heavy Duty (HD) engine and two Passenger car (PC) engines is performed to understand these differences.
A thermodynamic split of losses method is developed and used to compare these three combustion systems in order to find ways of improvement. Despite the different size of HD and PC engines, results are obtained on similar operating points. A detailed analysis of the differences between the HD and PC engine is then performed.
Finally, the use of the 0D modelling platform AMESim to simulate PC engine operating points with unconventional operating parameters borrowed to HD (Burnt Mass Fraction, AFR, …) is relevant to quantify and discuss efficiency gains potentially achievable by PC.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Residual Cooking Oil Biodiesel and Hexanol as Alternatives to Petroleum-Based Fuel in Low-Temperature Combustion: Parametric Study

2021-01-0520

View Details

TECHNICAL PAPER

Evaluation of EGR Effect on the Global Energy Balance of a High Speed DI Diesel Engine

2016-01-0646

View Details

TECHNICAL PAPER

Potential Benefits in Heavy Duty Diesel Engine Performance and Emissions from the Use of Variable Compression Ratio

2006-01-0081

View Details

X