Browse Publications Technical Papers 2017-01-0667
2017-03-28

Characteristic Time Analysis of SI Knock with Retarded Combustion Phasing in Boosted Engines 2017-01-0667

This study investigates the use of a characteristic reaction time as a possible method to speed up automotive knock calculations. In an earlier study of HCCI combustion it was found that for ignition at TDC, the ignition delay time at TDC conditions was required to be approximately 10 crank angle degrees (CAD), regardless of engine speed. In this study the analysis has been applied to knock in SI engines over a wide range of engine operating conditions including boosted operation and retarded combustion phasing, typical of high load operation of turbocharged engines. Representative pressure curves were used as input to a detailed kinetics calculation for a gasoline surrogate fuel mechanism with 312 species. The same detailed mechanism was used to compile a data set with traditional constant volume ignition delays evaluated at the peak pressure conditions in the end gas assuming adiabatic compression. For conditions with relatively early combustion phasing, the kinetic calculation predicted that auto ignition would occur at peak pressure if the ignition delay at peak pressure was in the range of 7 to 10 CAD. For retarded conditions however, the ignition delay threshold for auto-ignition at peak pressure was significantly longer and ranged from 18 to 35 CAD, due to the more gradual approach to peak pressure for retarded phasing. Additionally, at engine speeds where the compression path passed through the NTC kinetics region there was an increased tendency to knock due to significant heat release prior to final auto-ignition. This also increased the threshold ignition delay for knock. While a simple correlation of the results was not possible, the analysis points out the strong influence of retarded timing and NTC behavior on knock.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Knock Indexes Normalization Methodologies

2006-01-2998

View Details

TECHNICAL PAPER

Abnormal Combustion in Methanol-Fueled, Crankcase-Scavenged Two-Stroke Engines - A Theoretical Study

911304

View Details

TECHNICAL PAPER

Numerical Modeling of Spray Formation under Flash-boiling Conditions

2020-01-0328

View Details

X