Browse Publications Technical Papers 2018-01-0342
2018-04-03

Formation and Decomposition of Ammonium Nitrate on an Ammonia Oxidation Catalyst 2018-01-0342

Achieving high NOx conversion at low-temperature (T ≤ 200 °C) is a topic of active research due to potential reductions in regulated NOx emissions from diesel engines. At these temperatures, ammonium nitrate may form as a result of interactions between NH3 and NO2. Ammonium nitrate formation can reduce the availability of NH3 for NOx conversion and block active catalyst sites. The thermal decomposition of ammonium nitrate may result in the formation of N2O, a regulated Greenhouse Gas (GHG). In this study, we investigate the formation and thermal and chemical decomposition of ammonium nitrate on a state-of-the-art dual-layer ammonia oxidation (AMOX) catalyst. Reactor-based constant-temperature ammonium nitrate formation, temperature programmed desorption (TPD), and NO titration experiments are used to characterize formation and decomposition. N2 adsorption and diffuse reflectance Fourier transform infrared spectroscopy (DRIFTS) experiments are also conducted to elucidate the physical and chemical impacts of ammonium nitrate formation on the AMOX catalyst. The insights provided herein support the diesel aftertreatment communities’ ongoing efforts to understand low-temperature chemical processes such as ammonium salt formation and their impact on emissions.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Mechanism of White Smoke Generation Derived from Hydrocarbons Accumulations on Diesel Oxidation Catalyst

2018-01-0641

View Details

TECHNICAL PAPER

Development of Ultra-Stable Cu-SCR Aftertreatment System for Advanced Lean NOx Control

2019-01-0743

View Details

TECHNICAL PAPER

Improvement of CO Oxidation Performance by Controlling Pd State in DOC

2018-01-1256

View Details

X