Browse Publications Technical Papers 2018-01-1244
2018-04-03

Downsized Gasoline Engine Cylinder Deactivation MiL Development and Validation Using Real-Time 1-D Gas Code 2018-01-1244

Cylinder deactivation has become common not only in large swept volume gasoline V-engines but also in cheaper highly downsized automotive engines. Cylinder deactivation strategy leads to a combination of reduced throttling and pumping losses and consequently, to CO2 emissions reduction. This is achieved by deactivation of some cylinders and by moving the operation point of the firing cylinders to higher loads to compensate for the deactivated cylinders. This paper focuses on the 1.4 litre direct injection gasoline 4-cylinder (inline) engine and the development of its deactivation strategy in the Model in the Loop (MiL) environment using the Ricardo 1-D gas real-time code ‘WAVE-RT’ as the virtual engine controlled by the engine control strategy. The engine control strategy can be easily flashed into rapid prototyping ECU and validated on the testbed. The engine does not include ‘expensive’ 2nd + 3rd valve closing technology and therefore, the deactivation feature is achieved just by zero cylinder fueling applied to one or more cylinders to achieve the best possible fuel consumption. The real-time 1-D gas thermodynamic engine model is validated within the entire engine operating range against test data with/without deactivated cylinders. Moreover, further validation is done by running both the physical engine and the 1-D gas real-time code at transient load/speed cycles. The results from the steady-state and transient cycles show CO2 reduction. Using the MiL approach, the best cylinder deactivation strategy regions are identified. Additionally, the proposed MiL environment containing the 1-D gas real-time code and the engine control strategy can be further used for the development and calibration of advanced dynamic deactivation (known as skip-fire) strategies.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Simulation Study of 1D-3D Coupling for Different Exhaust Manifold Geometry on a Turbocharged Gasoline Engine

2018-01-0182

View Details

TECHNICAL PAPER

Highly Turbocharging a Restricted, Odd Fire, Two Cylinder Small Engine - Design, Lubrication, Tuning and Control

2006-01-3637

View Details

TECHNICAL PAPER

A Fast Detailed-Chemistry Modelling Approach for Simulating the SI-HCCI Transition

2010-01-1241

View Details

X