Browse Publications Technical Papers 2019-26-0120
2019-01-09

Low Cost EV Platform for Three Wheeler Electrification Development 2019-26-0120

This paper presents the FEV low cost EV platform intended to provide a modular and scalable platform for 2 and 3 wheelers that is robust and meets the desired performance characteristics. To enable this, we use a dedicated vehicle control unit (VCU) that is running FEV’s matured model library called PERSIST. The platform makes use of the inherent advantage of being a small scale vehicle that can be used with lower sized components or reduced set of components without compromising on safety. The electric vehicle platform will have modularly developed components and associated software and hardware with standardized interfaces. The electric power train includes support for standardized lithium ion batteries and a low cost vehicle control unit. This is required to not only safe guard the system overall but also be able to optimize the driving range, enhance drivability and to provide the driver with a more stable and secure interface for operating the vehicle. The expected rapid growth in the space demands that such platform based solutions are developed in order to cater to a variety of small and low speed electric vehicle applications. The paper will provide an overview of the algorithms used as well as the design decisions made for developing the platform. As a first application for the platform, FEV has developed an electric 3 wheeler, with performance characteristics matching or exceeding conventional 3 wheelers on road, with a top speed of 65 km/h and a driving range of 90km. The approach is focused on building a production intent level of vehicle and hence can also be readily applied on the existing 3 wheelers on the road as a retrofit solution. The paper will provide details on the electric 3 wheeler in IDC, real world conditions as well as the long term driving characteristics. The system design, component sizing, simulation activities are explained. The simulation results are compared with the real world data. The paper will also discuss the integration effort involved and provide a costing perspective for all the components for the electrified drivetrain.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
JOURNAL ARTICLE

Task and Message Scheduling for a FlexCAN-based Hybrid-Electric Vehicle Drivetrain Functional Unit

2008-01-0480

View Details

TECHNICAL PAPER

Development of a Vehicle Electric Power Simulator for Optimizing the Electric Charging System

2000-01-0451

View Details

TECHNICAL PAPER

Sensorless On Board Cell Temperature Control for Fast Charging

2019-01-0791

View Details

X