Browse Publications Technical Papers 2020-01-1168
2020-04-14

IC Engine Internal Cooling System Modelling Using 1D-CFD Methodology 2020-01-1168

Internal combustion engine gets heated up due to continuous combustion of fuel. To keep engine working efficiently and prevent components damage due to very high temperature, the engine needs to be cooled down. Based on power output requirement and provision for cooling system, every engine has it’s unique cooling system. Liquid based cooling systems are majorly implemented in automobile. It’s important to keep in mind that during design phase that, cooling the engine will lower the power to fuel consumption ratio. Therefore, during lower ambient conditions, the cooling system should be able to uniformly increase the temperature of the engine components, engine oil and transmission oil. This is achieved by circulating the coolant through cooling jacket, engine oil heater and transmission oil heater, which will be heated by the combustion heat. The objective of this study is to build a steady state 1D-model of cooling system; comprising of water pump, cooling jacket, engine head, thermostat, radiator, cabin heater, engine and transmission oil heaters with plumbing system. This 1D model is used to simulate vehicle drive cycle virtually. The whole model is validated with the actual vehicle testing. The drive cycle conditions are simulated in the form of transient simulation of 1D model by setting boundary conditions as per the engine speed and heat transfer of individual heat exchangers in the cooling system. The coolant flow numbers from both, vehicle test and 1D simulation are then compared. The 1D model is ensured to have +/- 10% deviation from the simulation and vehicle test results. This correlated 1D model can be used as the baseline for further development of engine cooling system in the future.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Performance of Organic Acid Based Coolants in Heavy Duty Applications

960644

View Details

TECHNICAL PAPER

Thermal Modeling of Engine Components for Temperature Prediction and Fluid Flow Regulation

2001-01-1014

View Details

TECHNICAL PAPER

Oil Cooler Removal from Light Duty Diesel Engines for Cost Reduction Purpose

2020-28-0333

View Details

X