Browse Publications Technical Papers 2020-28-0041
2020-08-18

Simulation of the Performance of Solar Driven Thermoelectric Based Rotary Desiccant Wheel HVAC System 2020-28-0041

In the automotive applications, the main functionality of the HVAC system includes heating, ventilation, and cooling or air-conditioning of the vehicle to achieve the desired indoor thermal comfort. In the current scenario, the conventional vapor compression based HVAC system is widely used. The typical refrigerants used to operate this equipment include HFCs and HFOs which are susceptible to cause an environmental hazard. This article aims to assess the performance of a hypothetical solar-driven thermoelectric based rotary desiccant wheel HVAC system (D-HVAC) to be used for automotive applications. The D-HVAC system uses the desiccant wheel to remove the latent heat, energy wheel to remove the sensible heat, evaporating coolers to achieve further cooling, the regeneration of the desiccant wheel by hot air and water as the refrigerant. In the case of a solar-driven-DHVAC system, solar energy is utilized for the regeneration of the desiccant wheel in place of hot air. However, the intensity of incident solar energy varies throughout the day. To compensate for this energy fluctuation an additional thermoelectric system (Peltier device) can be added to achieve the optimum regeneration of the desiccant wheel. The Peltier device avails the advantage to simultaneously heat the regeneration air and cool the process air to achieve the highest cooling coefficient of performance (COP) of the solar-driven D-HVAC system. The usage of PV cells to produce the required electricity to operate the blowers (for process air and regeneration air) and motor of the rotary desiccant wheel and TEC. Overall, through numerical simulation, the increment in the COP of the solar-driven thermoelectric based rotary desiccant wheel HVAC system in comparison with the simple D-HVAC system and conventional vapor compression based HVAC system are investigated.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
We also recommend:
TECHNICAL PAPER

Air Conditioning System Utilizing Vehicle Waste Energy

2009-01-0543

View Details

TECHNICAL PAPER

A Computer Model Based Sensitivity Analysis of Parameters of an Automotive Air Conditioning System

2004-01-1564

View Details

TECHNICAL PAPER

Design of an Automotive HVAC Blower Wheel for Flow, Noise and Structural Integrity

950437

View Details

X