Browse Publications Technical Papers 2021-01-0760
2021-04-06

Electrochemical Analysis of High Capacity Li-Ion Pouch Cell for Automotive Applications 2021-01-0760

Major original equipment manufacturers (OEMs) have already marketed electric vehicles in large scale but apart from business strategies and policies, the real engineering problems must be addressed. Lithium-ion batteries are a promising technology for energy storage; however, their low energy density and complex electro-chemical nature, compared to fossil fuels, presents additional challenges. Their complex nature and strong temperature dependence during operation must be studied with additional accuracy, capable to predict their behavior. In this research, a pseudo two dimensional (P2D) electro-chemical model, for a recent high capacity NMC pouch cell for automotive applications is developed. The electrochemical model with its temperature dependent parameters is validated at high, low, and reference temperature within 10°C to 50°C temperature range. For each temperature various discharge C-rates to accurately replicate the battery cell operational conditions. The overall goodness of the model is proven with limited RMS errors in all the cases. Low temperatures and high C-rates are discovered to limit sensibly the battery performances. The complete analysis provides valuable design considerations for the battery thermal management system (BTMS) to enhance performance, cycle life and safety of future electrified vehicle energy storage systems.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Voltec Battery Design and Manufacturing

2011-01-1360

View Details

TECHNICAL PAPER

Integration and Modularity Analysis for Improving Hybrid Vehicles Battery Pack Assembly

2018-01-0438

View Details

TECHNICAL PAPER

A Coupled Lattice Boltzmann-Finite Volume Method for the Thermal Transient Analysis of an Air-Cooled Li-Ion Battery Module for Electric Vehicles with Porous Media Insert Modeled at REV Scales

2019-24-0242

View Details

X