1985-02-01

General Thermodynamic Analysis for Engine Combustion Modeling 850205

The energy and entropy balance equations in an open control volume are treated analytically by a method that can be applied to any level of modeling (zero-dimensional, quasi-dimensional, and multi-dimensional) of any internal combustion engine (homogeneous-charge, stratified-charge, direct-injection, Diesel, adiabatic, …). The method involves no major assumptions and is, therefore, compatible with any detailed model for physical effects such as liquid fuel atomization and vaporization, heat transfer within the combustion chamber and through its walls, mass transfer (convective and diffusive) within the combustion chamber, with crevice regions, with prechambers, and through the inlet and exhaust ports, temperature, composition, and pressure nonuniformities, and so on. The result is in the form of differential equations for the instantaneous mass fraction of burnt gas mixture and for the entropy generated by irreversibility within the chosen control volume, in terms of the pressure and volume histories and appropriately defined mean variables. The choice of control volume may range from the entire combustion chamber (zero-dimensional approach) to a single mesh point in a numerical solution scheme of the differential local balance equations of mass, chemical species, energy and entropy, coupled with some closure scheme to model diffusion, viscosity, heat conduction and chemical kinetics (multi-dimensional approach). Irrespective of the level of detail of the chosen modeling approach, the entropy balance equation provides an interesting and useful, though very seldom exploited, independent relation to check the consistency of any set of additional modeling assumptions or closure scheme with the second law requirement of nonnegativity of the local and global rate of entropy production by irreversibility.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Modeling of Transient Heat Transfer for the 3-D Coupling Components in an Internal-Combustion Engine

2012-01-1759

View Details

TECHNICAL PAPER

Coupled 1D-3D Simulation of Common Rail Injector Flow Using AVL HYDSIM and FIRE

2009-24-0029

View Details

JOURNAL ARTICLE

Modeling Internal Combustion Engine with Thermo-Chemical Recuperation of the Waste Heat by Methanol Steam Reforming

2014-01-1101

View Details

X