1988-10-01

Thermal Response of Monolithic Catalytic Converters During Sustained Engine Misfiring: A Computational Study 881591

The thermal response characteristics of automobile monolithic converters during sustained engine misfiring have been studied using a mathematical model which accounts for the simultaneous processes of heat transfer, mass transfer, and catalytic reaction. Particular attention was given to the effects of converter properties and inlet exhaust conditions on the location and magnitude of the temperature peak developed during the transient. Our simulation results show that the temperature excursions in typical monolith converters during engine misfiring are generally characterized by an ignition zone (where a steep exothermic temperature rise occurs as a result of rapid reaction) preceded by a relatively short, unreactive region near the inlet. Also, the predicted maximum wall temperature correlates well with the adiabatic reaction temperature, and the melting point of the monolith substrate would not be exceeded unless the extent of engine misfiring is 40% or higher.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Emission Levels and Catalyst Temperatures as a Function of Ignition-Induced Misfire

920298

View Details

TECHNICAL PAPER

Inverse Modeling: Theory and Engineering Examples

2016-01-0267

View Details

TECHNICAL PAPER

Computer Aided Engineering in the Design of Catalytically Assisted Trap Systems

970472

View Details

X