1992-02-01

Measuring Turbulent Flame Growth by Visualization 920184

High speed schlieren video and pressure trace analyses were used to study the effects of turbulence on burning velocity in a fixed volume combustion chamber. Lean methane-air mixtures of equivalence ratios of 0.76 and 0.96 were ignited at 1 atm and 23°C. Schlieren images of flame growth were recorded on video at 2000 frames per second while combustion chamber pressure was simultaneously recorded. The turbulence intensity at ignition was set at 0 m/s to 4 m/s intensity with integral scale around 7.6 mm by pulling a perforated plate across the chamber prior to ignition. In the analysis, the turbulence parameters were adjusted for the effect of decay and rapid distortion in a closed vessel during combustion.
Results of both video and pressure trace analyses show a linear relationship between turbulent burning velocity and turbulence intensity as expected. Moderate changes in equivalence ratio had a negligible effect on this relationship. In studying the flame growth from the ignition spark up to 55 mm flame radius, it was found that the effectiveness of turbulence increased dramatically as the flame grew. While the relationship of burning velocity to turbulence intensity remained linear, the strength of the proportional constant increased with increasing flame size. It is shown that this can be explained by relating the size of the flame to the turbulence integral scale. A flame must be much larger than the integral scale for the turbulence to be fully effective.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Aircraft Spark-Ignition Versus Compression-Ignition Engines

350112

View Details

TECHNICAL PAPER

Life Cycle Value Assessment (LCVA) Comparison of Conventional Gasoline and Reformulated Gasoline

980468

View Details

TECHNICAL PAPER

The Effect of Enhanced Ignition Systems on Early Flame Development in Quiescent and Turbulent Conditions

910564

View Details

X