1992-08-03

Experimental Determination of In Situ Utilization of Lunar Regolith for Thermal Energy Storage 929277

A Lunar Thermal Energy from Regolith (LUTHER) experiment has been designed and fabricated at the NASA Lewis Research Center to determine the feasibility of using lunar soil as thermal energy storage media. The experimental apparatus includes an alumina ceramic canister (10 in. diameter by 18 in. length) which contains simulated lunar regolith, a heater (either radiative or conductive), 9 heat shields, a heat transfer cold jacket, and 19 type B platinum rhodium thermocouples. The simulated lunar regolith is a basalt, mined and processed by the University of Minnesota, that closely resembles the lunar basalt returned to earth by the Apollo missions. The experiment will test the effects of vacuum, particle size, and density on the thermophysical properties of the regolith. The properties include melt temperature (range), specific heat, thermal conductivity, and latent heat of storage. Two separate tests, using two different heaters, will be performed to study the effect of heating the system using radiative, and conductive heat transfer. The physical characteristics of the melt pattern, material compatibility of the molten regolith, and the volatile gas emission will be investigated by heating a portion of the lunar regolith to its melting temperature (1162 °C) in a 10-6 torr vacuum chamber, equipped with a gas spectrum analyzer. A finite differencing SINDA model was developed at NASA Lewis to predict the performance of the LUTHER experiment. The analytical results of the code will be compared with the experimental data generated by the LUTHER experiment. The code will predict the effects vacuum, particle size, and density has on the heat transfer of the simulated regolith.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Feasibility of Using In-Situ Lunar Soil as a Latent Thermal Energy Storage Media

941328

View Details

TECHNICAL PAPER

After-Treatment for Reduction of Diesel Exhaust Particulate

2001-01-3204

View Details

TECHNICAL PAPER

Cell Design for Ceramic Monoliths for Catalytic Converter Application

881685

View Details

X