1993-03-01

Advanced Nonlinear Observer Control of SI Engines 930768

In earlier work it has been shown that a nearly ideal solution to the problem of accurate estimation of the air mass flow to a central fuel injection (CFI) (or throttle body (TBI)) or EFI (or multi-point (MPI)) equipped engine is provided by using a closed loop nonlinear observer for the engine. With proper design this observer was shown to be both accurate and robust with respect to modelling end measurement errors. It is based on a Constant Gain Extended Kalman Filter (CGEKF).
Since the publication of this work, another type of observer has emerged in the literature for which claims of great robustness have been made. This observer is based on new developments in the area of nonlinear control theory and is called a Sliding Mode Observer (SMO).
In this paper these two types of observers are compared theoretically and experimentally on an engine mounted on a dynamometer. A very aggressive driving scenario is assumed for these tests. It is shown that while the sliding mode observer does have certain robustness characteristics, these are not of a higher order than those of a CGEKF based observer. Moreover the mode of operation of the SMO is inherently noisy which degrades its performance when compared to the CGEKF. Both observers can be realized in currently available engine control microprocessors.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

An Evaluation of Techniques for Measuring Air-Fuel Ratio

660118

View Details

STANDARD

Engine Power Test Code - Spark Ignition and Compression Ignition - As Installed Net Power Rating

J1349_201109

View Details

TECHNICAL PAPER

Cosworth MBA Engine

920849

View Details

X