1993-11-01

Detecting Knock in Noisy Spark Ignition Engines 931900

This paper examines three strategies of detecting knock that are less dependent of engine noise. The first strategy uses the exhaust temperature, the second uses a dithering method (systematically advancing and retarding the timing), while the third uses the standard deviation of knock intensity as the indicator of knock intensity.
The first strategy proves to be difficult to detect knock since the exhaust temperature is strongly dependent on the combustion efficiency instead of knock intensity. The second strategy uses a conventional accelerometer but discriminates against mechanical noise by subtracting the knock intensity during the retarded part from that of the advanced part of a dither cycle. This approach is found to require averaging the signals over large number of engine cycles and using large dither amplitude. The third strategy uses the Difference of Knock Intensity strategy where two cycle standard deviation is used. The last strategy was shown to improve the signal to noise ratio by at least a factor of two, even at high engine speed (4800 rpm). The strategy was implemented and was able to keep the timing within 5 CAD.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Development of Knock Sensor

861375

View Details

TECHNICAL PAPER

Engine Air Control- Basis of a Vehicular Systems Control Hierarchy

780346

View Details

TECHNICAL PAPER

Influence of Valve Noise on Knock Detection in Spark Ignition Engines

880084

View Details

X