1995-10-01

In-Cylinder Catalysts - A Novel Approach to Reduce Hydrocarbon Emissions from Spark-Ignition Engines 952419

A novel approach was proposed and investigated to reduce unburned hydrocarbon emissions from spark-ignition engines using in-cylinder catalysts. The unburned hydrocarbons in spark-ignition engines arise primarily from sources near the combustion chamber walls, such as flame quenching at the entrance of crevice volumes and at the combustion chamber wall, and the absorption and desorption of fuel vapour into oil layers on the cylinder wall. The proximity of these sources of unburned hydrocarbons to the wall means that they can be reduced significantly by simply using in-cylinder catalysts on the combustion chamber walls, in particular on the surfaces of the crevice volumes. A platinum-rhodium coating was deposited on the top and side surfaces of the piston crown, and its effects on the engine combustion and emission characteristics were examined in this experimental investigation. The in-cylinder catalyst gave rise to a reduction of exhaust unburned hydrocarbon emissions by approximately 20% over a wide range of operating conditions.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Combustion Chamber Deposit Effects on Hydrocarbon Emissions from a Spark-Ignition Engine

972887

View Details

TECHNICAL PAPER

Combustion Chamber Surface Area, A Key to Exhaust Hydrocarbons

660111

View Details

TECHNICAL PAPER

The Contribution of Different Oil Consumption Sources to Total Oil Consumption in a Spark Ignition Engine

2004-01-2909

View Details

X