1997-02-24

Flow Analysis in Nozzle Hole in Consideration of Cavitation 970052

This paper will focus on fuel flow analysis in nozzles, in particular, in the injection hole, a key component of Fuel Injection Equipment(FIE). Optimum controlled flow in the hole improves flow efficiency and atomization. To meet the emission regulations which will be introduced from the end of '90's to the 21st century, Diesel Engines require FIE to produce higher injection pressure which creates better atomization and higher utilization of air. But higher injection pressure results in increased pump driving torque, larger pump size and higher cost. We have studied the improvement in fuel flow characteristics of the nozzle, using an enlarged flow model and the theoretical analysis method. As a result, we have found that the cavitation, which occurs at the inlet of the hole, is affected by the configuration of the sac hole and injection hole. And, furthermore, the cavitation has a direct effect on the contraction and its recovery flow. The optimum designed nozzle will be an effective measure to create a fine spray under lower injection pressure, which will be cost competitive in the market and help engines meet regulations.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Fuel Flow Impingement Measurements on Multi-Orifice Diesel Nozzles

2006-01-1552

View Details

TECHNICAL PAPER

Staged fuel injection with in-line pumps: simulation and experiments

2001-01-1864

View Details

JOURNAL ARTICLE

Study of Air Entrainment of Multi-hole Diesel Injection by Particle Image Velocimetry - Effect of Neighboring Jets Interaction and Transient Behavior After End of Injection.

2010-01-0342

View Details

X