1997-05-20

Modal Content of Heavy-Duty Diesel Engine Block Vibration 971948

High-fidelity overall vehicle simulations require efficient computational routines for the various vehicle subsystems. Typically, these simulations blend theoretical dynamic system models with empirical results to produce computer models which execute efficiently. Provided that the internal combustion engine is a dominant source of vehicle vibration, knowledge of its dynamic characteristics throughout its operating envelope is essential to effectively predict vehicle response.
The present experimental study was undertaken to determine the rigid body modal content of engine block vibration of a modern, heavy-duty Diesel engine. Experiments were conducted on an in-line six-cylinder Diesel engine (nominally rated at 470 BHP) which is used in both commercial Class-VIII trucks, and on/off-road military applications. The engine was mounted on multi-axis force transducers in a dynamometer test cell in the standard three-point configuration. Standard modal analysis techniques were exploited to determine i) the rigid body modal characteristics of the engine block, and ii) the engine mount force signatures of the six rigid body vibration modes of the engine block. Modal content of the firing engine and its relevance to vehicle simulation is discussed.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Optimising Cooling System Performance Using Computer Simulation

971802

View Details

TECHNICAL PAPER

A Particle Swarm Optimization Tool for Decoupling Automotive Powertrain Torque Roll Axis

2014-01-1687

View Details

TECHNICAL PAPER

SI Engine Load Torque Estimator Based on Adaptive Kalman Filter and Its Application to Idle Speed Control

2005-01-0036

View Details

X