1998-02-23

Early Spray Development in Gasoline Direct-Injected Spark Ignition Engines 980160

The characteristics of the early development of fuel sprays from pressure swirl atomizer injectors of the type used in direct injection gasoline engines is investigated. Planar laser-induced fluorescence (PLIF) was used to visualize the fuel distribution inside a firing optical engine.
The early spray development of three different injectors at three different fuel pressures (3, 5, and 7 MPa) was followed as a function of time in 30 μsec intervals. Four phases could be identified: 1) A delay phase between the rising edge of the injection pulse and the first occurrence of fuel in the combustion chamber, 2) A solid jet or pre-spray phase, in which a poorly atomized stream of liquid fuel during the first 150 μsec of the injection. 3) A wide hollow cone phase, separation of the liquid jet into a hollow cone spray once sufficient tangential velocity has been established and 4) A fully developed spray, in which the spray cone angle is narrowed due to a low pressure zone at the center.
The spray penetration, quality of atomization and the specific fuel distribution during the duration of injection (about 2 ms or 12 CAD) are functions of fuel delivery pressure as well as ambient pressure. The experiments are intended for future comparison with computational results, as well as for guidance in the the design of GDI combustion systems.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

An Experimental and Analytical Study of Engine Fuel Spray Trajectories

800135

View Details

TECHNICAL PAPER

The Influence of Swirl on HSDI Diesel Combustion at Moderate Speed and Load

2000-01-1829

View Details

TECHNICAL PAPER

Characterization of Mixture Formation in a Direct Injected Spark Ignition Engine

2001-01-1909

View Details

X