1998-02-23

Estimating Vehicle Deformation Energy for Vehicles Struck in the Side 980215

The reconstruction of accidental impacts to the side structure of one or more accident vehicles often incorporates estimates of the energy absorbed by laterally struck vehicle(s). Such estimates generally involve considerably more issues than does the assessment of frontal or rear impact deformation energy. The sides of vehicles are, compared to the usual striking object, relatively broad, and they contain zones of varying stiffness supported by collapsible box structures. Side stiffnesses can vary widely, depending upon impact geometry. Most side impact crash tests that can readily be used to make estimates of side stiffness have been conducted by the National Highway Traffic Safety Administration (NHTSA). These tests are almost exclusively conducted against one particular area of the side structure, the damage sustained by test vehicles is generally poorly documented, and reported crush is obtained via procedures which contain measurement discontinuities as the severity of the impacts increase. Published “recommended” crush coefficients generally assume that the CRASH constant stiffness model holds over the complete range of crush depths. The concept of a Force Saturation model is recommended to deal with the more realistic structural behavior seen in practice at larger crush depths.
This paper has two main objectives: (1) to summarize and critique the currently available side impact data base upon which side stiffness models and their associated coefficients have and can be based, and (2) to provide guidelines and insights into the development of reasonable energy estimates by use of improved crush models and crush measurement procedures.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Computer Simulation of Impact Response of the Human Body in Car-Pedestrian Accidents

933129

View Details

TECHNICAL PAPER

Validation of the Circular Trajectory Assumption in Critical Speed

2005-01-1189

View Details

TECHNICAL PAPER

CRASH3 Damage Algorithm Reformulation for Front and Rear Collisions

900098

View Details

X