1998-09-29

Use of Polyurethane Material Models for Simulating Leg-Form Impact in Different Explicit Finite Element Codes 982359

Compressible plastic foams are used throughout the interior and bumper systems of modern automobiles for safety enhancement and damage prevention. Consequently, modeling of foams has become very important for automobile engineers. To date, most work has focused on predicting foam performance up to approximately 80% compression. However, in certain cases, it is important to predict the foam under maximum compression, or ‘bottoming-out.’ This paper uses one such case-a thin low-density bumper foam impacted by a pedestrian leg-form at 11.1 m/s-to investigate the ‘bottoming-out’ phenomenon. Multiple material models in three different explicit Finite Element Method (FEM) packages (RADIOSS, FCRASH, and LS-DYNA) were used to predict the performance. The finite element models consisted of a foam covered leg-form impacting a fixed bumper beam with a foam energy absorber. The predicted leg-form acceleration over time was then compared to the leg-form acceleration observed during a physical test.
Within the finite element models solid elements using material types such as honeycomb, advanced foam curvilinear recoverable, strain rate foam recoverable, and low density foam were evaluated as to their accuracy in simulating Confor™ foam on the pedestrian leg-form and polyurethane energy-absorbing foam on a bumper beam under extreme compression or deformation conditions. Extreme deformation which occurs after 80% compression can cause excessive hourglassing of certain types of elements. During this extreme event many solid element material types will not exhibit the correct foam behavior, consequently the results lead to an incorrect prediction. This study attempts to determine the best material type to use during this type of large deformation impact.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

A Method to Combine a Tire Model with a Flexible Rim Model in a Hybrid MBS/FEM Simulation Setup

2011-01-0186

View Details

JOURNAL ARTICLE

Structural Optimization of Thin-Walled Tubular Structures for Progressive Buckling Using Compliant Mechanism Approach

2013-01-0658

View Details

TECHNICAL PAPER

Testing and Finite Element Modeling of Hydroform Frames in Crash Applications

2007-01-0981

View Details

X