Refine Your Search

Search Results

Technical Paper

4000 F Oxidation Resistant Thermal Protection Materials

1966-02-01
660659
Coated refractory metals, coated and alloyed graphites, hafnium-tantalum alloys, refractory borides, and stabilized zirconias are considered for the 3600–4000 F high-velocity air environment. Only refractory borides and stabilized zirconias are indicated as offering long duration and reuse capabilities for such high-temperature utilization. Iridium, as coatings on substrates of either graphites or refractory metals, appears attractive for shorter times (less than 1 hr). Environmental evaluation and the need for a theoretical framework to enable the prediction of performance data for such materials are indicated to be major problems facing users and suppliers.
Technical Paper

4000–5000 R Temperature Surveys in Mach 0.2–0.6 Hydrocarbon Hot Gas Streams

1963-01-01
630367
This paper discusses five different methods for measuring the gas stream temperature from a burner using a hydrocarbon fuel, air, and oxygen. Tests were made with a single shielded BeO probe, a bare wire iridium -- 60% rhodium/iridium couple, a tantalum triple shielded platinum -- 10% rhodium/platinum thermocouple, the sodium line reversed technique, and a watercooled total enthalpy probe. The most serviceable system proved to be the bare wire iridium -- 60% rhodium/iridium couple, particularly for carrying out stream surveys where relative, rather than true temperatures, are of primary concern. More study is needed to establish a system for determining the true stream temperature.
Journal Article

400Hz High Speed Static Transfer Switch

2008-11-11
2008-01-2877
The objective of this project was to replace electromechanical power line contactors with a Static Transfer Switch (STS) to improve the transfer of electrical power between aircraft generators and decrease required maintenance. The switch requirements include high reliability, lightweight, and high speed (less than 15mS) power transfer. An STS can shorten the bus transfer time to less than the “ride-through” of aircraft electronic loads and therefore have the ability to control and transfer electrical power while maintaining critical mission requirements. The content of this paper and presentation will discuss the initial problem, the research and development approach, design, and initial testing of the STS.
Journal Article

4H-SiC VJFET Based Normally-off Cascode Switches for 300°C Electronic Applications

2008-11-11
2008-01-2883
Vertical-Junction-Field-Effect-Transistors (VJFETs) are currently the most mature SiC devices for high power/temperature switching. High-voltage VJFETs are typically designed normally-on to ensure voltage control operation at high current-gain. However, to exploit the high voltage/temperature capabilities of VJFETs in a normally-off high-current voltage-controlled switch, high-voltage normally-on and low-voltage normally-off VJFETs were connected in the cascode configuration. In this paper, we review the high temperature DC characteristics of VJFETs and 1200 V normally-off cascode switches. The measured parameter shifts in the 25°C to 300°C temperature range are in excellent agreement with theory, confirming fabrication of robust SiC VJFETs and cascode switches.
Technical Paper

5-Axis Flex Track Drilling Systems on Complex Contours: Solutions for Position Control

2013-09-17
2013-01-2224
Previous Flex Track drilling systems move along two parallel tracks that conform to the contour of a work piece surface. Until recently, applications have been limited to relatively simple surfaces such as the cylindrical mid-body fuselage join of a commercial aircraft. Recent developments in the state of the art have introduced the 5-axis variant which is capable of precision drilling on complex contours. This paper presents solutions to two positioning challenges associated with this added functionality: the ability to align the spindle axis normal to an angled drilling surface while maintaining accuracy in tool-point position, the ability to maintain synced motion between dual drives on complex track profiles.
Technical Paper

5-Axis Flex Track System

2012-09-10
2012-01-1859
Flex Track Systems are seeing increased usage in aerospace applications for joining large assemblies, such as fuselage sections. Previous systems were limited to work pieces that allowed the tracks to follow a gentle radius of curvature, limiting the locations where the system could be used. This paper describes a new 5-Axis Flex Track System developed to expand the usage of the systems, allowing them to process work pieces containing complex and irregular contours. Processing complex contours is accomplished through the addition of A and B axes providing normalization in multiple directions. These new systems are configured with the latest multi-function process capabilities allowing drilling, hole quality measurement, and temporary or permanent fastener installation.
Technical Paper

50 KVA High Temperature Bi-directional Converter for On-Engine Application in More Electric Aircraft

2014-09-16
2014-01-2111
The transition towards More Electric Aircraft (MEA) architectures has challenges relating to integration of power electronics with the starter generator system for on-engine application. To efficiently operate the power electronics in the hostile engine environment at high switching frequency and for better thermal management, use of silicon carbide (SiC) power devices for a bi-directional power converter is examined. In this paper, development of a 50 kVA bi-directional converter operating at an ambient temperature of about 2000C is presented. The design and operation of the converter with details of control algorithm implementation and cooling chamber design are also discussed.
Technical Paper

50 to 100-Ah Lithium Ion Cells for Aircraft and Spacecraft Applications

1997-06-18
971230
As a part of a program jointly supported by the USAF and Canada's Department of National Defense, BlueStar is developing large (50 to 100-Ah)lithium ion cells for aircraft and spacecraft applications. Presently, 20-Ah cells are being developed as the first stage of the scale-up process and the design of these cells involves several tradeoffs related to the specific nature of this application. This paper will present the design of this first generation cell in the context of these tradeoffs as well as presenting the results of the performance and life testing of these cells.
Journal Article

500 Hours Endurance Test on Biodiesel Running a Euro IV Engine

2010-10-25
2010-01-2270
A 500 hours endurance test was performed with a heavy-duty engine (Euro IV); MAN type D 0836 LFL 51 equipped with a PM-Kat®. As fuel 100% biodiesel was used that met the European specification EN 14214. The 500 hours endurance test included both the European stationary and transient cycle (ESC and ETC) as well as longer stationary phases. During the test, regulated emissions (carbon monoxide, nitrogen oxides, hydrocarbons and particulate matter), the particle number distribution and the aldehydes emission were continuously measured. For comparison, tests with fossil diesel fuel were performed before and after the endurance test. During the endurance test, the engine was failure-free for 500 hours with the biogenic fuel. There were almost no differences in specific fuel consumption during the test, but the average exhaust gas temperature increased by about 15°C over the time. Emissions changed only slightly during the test.
Technical Paper

6 degrees of freedom simulation of an unguided sounding rocket using Matlab/Simulink

2024-01-08
2023-36-0095
Unguided sounding rockets, also known as sub-orbital rockets, are vehicles that carry scientific experiments and/or sensors to collect data during their trajectory. These rockets lack active control but are capable of traversing the Earth’s atmosphere. It is crucial to thoroughly analyze the flight parameters during the preliminary design phase. The Open Rocket flight simulation software, developed by Sampo Niskanen, is a widely used open-source project. However, it has some simplifications in comparison to its documentation. It does not specify the calculations of critical parameters required for the rocket’s stability during its flight. Additionally, it does not calculate data related to dynamic stability, which encompasses the system’s ability to make disturbances corrections during the rocket’s trajectory. Consequently, this study presents a flight simulation of a rocket with 6 degrees of freedom using Matlab/Simulink.
Technical Paper

6-DOF Enhancement of Precision Guided Munitions Testing

1997-10-01
975522
Enemy threats during Operation Desert Storm drove many Allied ground attack aircraft to medium altitude to deliver their weapons. Although many Precision Guided Munitions (PGMs) proved to be highly accurate at increased heights, the majority of bombs dropped from medium altitude were low-drag general purpose bombs (LDGP). The aircraft carrying the LDGPs traded accuracy for altitude in order to reduce the risk to aircraft and crews. This event helped highlight the need to drop LDGP weapons more accurately. Additionally, there are environments where even many current PGMs are ineffective. During the Gulf War, for example, smoke from the Kuwaiti oil fires obscured the skies, prohibiting the use of laser guided bombs. Currently there is a program in testing that is designed to fill these operational gaps. The Joint Direct Attack Munition (JDAM) is being developed to convert our inventory of LDGPs into PGMs and modeling/simulation is playing a vital role in its design.
Technical Paper

6DOF Metrology-integrated Robot Control

2003-09-08
2003-01-2961
This paper describes ongoing research into Metrology-integrated robot control. The research is a part of an ongoing EU funded aircraft industry project – ADFAST*. The ADFAST project tries to implement the use of industrial robots in low-volume production, high-demand-on-accuracy operations and for dynamic force compensation. To detect and compensate deflection in industrial robots during a process, the robot uses a metrology system. The metrology system supervises the tool center point of the robot as it executes its processes. Leica has recently released a new metrology system; the LTD800, which measures distances with laser interferometry and can simultaneously measure orientation of targets, through photogrammetry, using an additional camera on top of the measuring unit. This paper will describe theory and results from tests performed on integrating the LTD800 with the robot.
Technical Paper

727, B-52 Retrofit with PW2037…. Meeting Today's Requirements

1982-02-01
821443
Offering aircraft fuel efficiency improvements of 30 to 40% over the powerplants it will replace, PW2037 retrofit in the 727-200 Advanced and B-52 aircraft is attracting heightened interest. A comparison of PW2037 technical characteristics with current aircraft powerplants substantiates the improvement potential.The engine installation and modifications necessary for aircraft system compatibility do not impose significant increases in complexity or cost. The resultant improvements in aircraft capability (727 and B-52) and economic viability to airlines (7271 produce aircraft uniquely suited to today's operational requirements and constrained equipment budgets.
Technical Paper

737–800 Winglet Integration

2001-09-11
2001-01-2989
A joint venture called Aviation Partners Boeing successfully integrated winglets into the Next-Generation 737–800 by retaining performance improvements with minimal weight penalty on the existing 737 wing design. Program challenges included developing both retrofit and production configurations using a common winglet design, causing minimal impact on all customers, and causing minimal disruption to the 737 production process. Winglet benefits along with improved performance include reduced engine wear and enhanced visual appeal.
Technical Paper

747 DEVELOPMENTS

1973-02-01
730355
Changes in air transport operating environment are examined to show how they are beginning to change the design and use of transport aircraft. The essential requirement of the changing market is seen to be a new flexibility to provide (a) versatility in the quantity of normal on-demand seats provided in each market, (b) suitability for high capacity seasonal bulk class operations, and (c) suitability for expanding the cargo load capability on selected passenger flights. Airplane characteristics and advanced technology to satisfy the requirements of the new operating flexibility are discussed.
Technical Paper

747 ENGINE INSTALLATION FEATURES

1968-02-01
680335
New approaches to problems such as noise, temperature control of accessories and equipment in the nacelle, as well as improved safety features, are necessary in a modern high by-pass engine installation. The means of supporting the engine, cowling design, and maintainability features combine to improve the state of the art that a more economic airplane will result.
Technical Paper

747 Flight Test Certification

1970-02-01
700828
The 747 flight test certification program was initiated with the first flight of the No. 1 airplane on February 9, 1969. Five test airplanes were used in an intensive test program involving 1443 flight hr and 36-1/4 airplane months, with the last certification flight on December 23, 1969. Full type certification approval was granted by the FAA on December 30, 1969 after a total of 10-2/3 months of flight testing. These statistics compare very well with the original program estimates, which were based on Boeing's extensive experience with development and certification testing of commercial transport airplanes. The success of this test program was not due to any great advancements in flight test techniques specifically for the 747, but was due to the tried and proven test methods developed during past certification programs at Boeing. This is not meant to imply that some new methods were not used, but to emphasize that test techniques evolve with experience.
Technical Paper

747 Freighter Service: Developments of Success

1982-02-01
821559
The first 747 Freighter, delivered to Lufthansa on March 9, 1972, marked the beginning of a new era in air cargo transportation. Since then developments applied to the 747 Freighter not only increased its cargo volume and range capability, but also reduced its operating cost per unit of cargo. Today 747 Freighters provide efficient worldwide service and transport two-thirds of all the air cargo in the commercial freighter market. The future will see new technologies applied to the 747 Freighter; improvements that will continue to reaffirm its position as the leader in the air cargo transportation market. These developments will repeat the patterns of the past, i.e., delivering the most productive, most efficient, most successful freighter aircraft into the marketplace.
Technical Paper

747 Propulsion Pod FIRST YEAR OF OPERATION

1969-02-01
690389
The development of the 747 airplane with a new engine, the JT9D-3, which was being “wrung out” during the same time period, presented the need for a comprehensive, close-knit program of testing between the two companies involved. This paper deals with the first year of this joint effort.
X