Refine Your Search

Search Results

Technical Paper

Adaptive Cycle Engines vs. Electric Motors: A Comparison on Standard Drive Schedules

2024-04-09
2024-01-2097
Adaptive Cycle Engines, where compression and expansion events do not follow a fixed sequence but rather take place depending on demand, are competitive against electric motors because of their higher power density, lower carbon footprint with current energy sources, and predicted ability to use any kind of renewable fuel. The advantage of Adaptive Cycle Engines is greater whenever the powerplant has at least two distinct operating modes: one for high output, and one for high energy economy. This paper compares the well-to-wheels CO2 emissions and pre-tax costs when operating powerplants based on Adaptive Cycle Engines and on electric motors under several scenarios: passenger car, on-road heavy-duty vehicle, and light aircraft.
Technical Paper

Ultra-Downsizing of ICEs Based on True Atkinson Cycle Implementations. Thermodynamic Analysis and Comparison on the Indicated Fuel Conversion Efficiency of Atkinson and Classical ICE Cycles

2024-04-09
2024-01-2096
Ultra-Downsizing (UD) was introduced as an even higher level of downsizing for Internal Combustion Engines ICEs, see [2] SAE 2015-01-1252. The introduction of Ultra Downsizing (UD) aims to enhance the power, efficiency, and sustainability of ICEs while maintaining the thermal and mechanical strain within acceptable limits. The following approaches are utilized: 1 True Atkinson Cycles are implemented utilizing an asymmetrical crank mechanism called Variable Compression and Stroke Ratios (VCSR). This mechanism allows for extended expansion stroke and continuous adjustment of the Volumetric Compression Ratio (VCR). 2 Unrestricted two or more stage high-pressure turbocharging and intensive intercooling: This setup enables more complete filling of the cylinder and reduces the compression work on the piston, resulting in higher specific power and efficiency. 3 The new Load Control (LC) approach is based to continuous VCR adjustment.
Technical Paper

Formula 1 Race Car Aerodynamics: Understanding Floor Flow Structures and Why It Is a Key Component in Modern Racing

2024-04-09
2024-01-2078
This paper delves into the intricate realm of Formula 1 race car aerodynamics, focusing on the pivotal role played by floor flow structures in contemporary racing. The aerodynamic design of the floor of a Formula 1 car is a fundamental component that connects the flow structures from the front wing to the rear end of the car through the diffuser, thus significantly influencing the generation of lift and drag. In this work, CFD was used to predict the structure of the vortices and flow pattern underneath a Formula 1 car using a CAD model that mimicked the modern Red Bull Racing Team’s car in recent years. Through comprehensive analysis and simulation, a detailed understanding of the complex flow patterns and aerodynamic phenomena occurring beneath the floor of the car and its vicinity is presented.
Technical Paper

Lightweight Design of Integrated Hub and Spoke for Formula Student Racing Car

2024-04-09
2024-01-2080
In the racing world, speed is everything, and the Formula Student cars are no different. As one of the key means to improve the speed of the car, lightweight plays an important role in the racing world. The weight reduction of unsprung metal parts can not only improve the driving speed, but also effectively optimize the dynamic of the car, so the lightweight design of unsprung parts has attracted much attention. In the traditional Formula Student racing car, the hub and spoke are two independent parts, they are fixed by four hub bolts or a central locking nut, the material of these fasteners is usually steel, so it brings a lot of weight burden. In order to achieve unsprung lightweight, a new type of wheel part design of Formula Student racing car is proposed in this paper. The hub and spoke are designed as integrated aluminum alloy parts, effectively eliminating the mass of hub bolts or central locking nuts.
Technical Paper

A numerical Methodology for Induction Motor Control: Lookup Tables Generation and Steady-State Performance Analysis

2024-04-09
2024-01-2152
This paper presents a numerical methodology to generate lookup tables that provide d- and q-axis stator current references for the control of electric motors. The main novelty with respect to other literature references is the introduction of the iron power losses in the equivalent-circuit electric motor model implemented in the optimization routine. The lookup tables generation algorithm discretizes the motor operating domain and, given proper constraints on maximum stator current and magnetic flux, solves a numerical optimization problem for each possible operating point to determine the combination of d- and q- axis stator currents that minimizes the imposed objective function while generating the desired torque. To demonstrate the versatility of the proposed approach, two different variants of this numerical interpretation of the motor control problem are proposed: Maximum Torque Per Ampere and Minimum Electromagnetic Power Loss.
Technical Paper

Efficient Electric School Bus Operations: Simulation-Based Auxiliary Load Analysis

2024-04-09
2024-01-2404
The study emphasizes transitioning school buses from diesel to electric to mitigate their environmental impact, addressing challenges like limited driving range through predictive models. This research introduces a comprehensive control-oriented model for estimating auxiliary loads in electric school buses. It begins by developing a transient thermal model capturing cabin behavior, divided into passenger and driver zones. Integrated with a control-oriented HVAC model, it estimates heating and cooling loads for desired cabin temperatures under various conditions. Real-world operational data from school bus specifications enhance the model’s practicality. The models are calibrated using experimental cabin-HVAC data, resulting in a remarkable overall Root Mean Square Error (RMSE) of 2.35°C and 1.88°C between experimental and simulated cabin temperatures.
Technical Paper

Enhancing Vehicle Architecture Development: A Robust Approach to Predicting Ride and Handling Performance and Optimization through Reliability Analysis

2024-04-09
2024-01-2423
Global automobile manufacturers are increasingly adopting vehicle architecture development systems in the early stages of product development. This strategic move is aimed at rationalizing their product portfolios based on similar specifications and functions, with the overarching goal of simplifying design complexities and enabling the creation of scalable vehicles. Nevertheless, ensuring consistent performance in this dynamic context poses formidable challenges due to the wide range of design possibilities and potential variations at each development stage. This paper introduces an efficient reliability analysis process designed to identify and mitigate the distribution of Ride and Handling (R&H) performance. We employ a range of reliability analysis techniques, including Latin Hypercube Sampling and the enhanced Dimension Reduction (eDR) method, utilizing various types of models such as surrogate models and multi-body dynamics models.
Technical Paper

Dynamic Performance Optimization of Ball Joints with Cross Groove for Automotive Driveshaft System

2024-04-09
2024-01-2438
The ball joint with cross groove offers both angular and plunging motion. When transmitting the same torque, the cross groove ball joint is lighter than other plunging Constant Velocity Joints (CVJs). It is crucial for the design of the joint and enhancing the contact fatigue life of the raceway to accurately estimate component loads of the ball joints with cross groove. In this study, the transmission efficiency of the joint and the peak value of contact force between ball and the track are used as evaluation indexes for characterizing dynamic performance of the joint. A multibody dynamic model of the joint is established to calculate its dynamic performance. In the model, the contact properties and friction characteristics of the internal structures were modeled, and a nonlinear equivalent spring and damping model was adopted for estimating the contact force. The transmission efficiency loss of the cross groove joint was measured and compared with the calculated values.
Technical Paper

Optimization of Cold Start Performance of Diesel Engine Under Low Temperature and High Altitude Environment

2024-04-09
2024-01-2455
The problem of keeping the stable starting performance of diesel engine under high altitude and low temperature conditions has been done a lot of research in the field of diesel engine, but there is a lack of research on extreme conditions such as above 2000 meters above sea level and below 0°C. Aiming at solving the cold start problem of diesel engine in extreme environment, a set of chamber system of cold start environment diesel engine was constructed to simulate environment of 3000m altitude and -20°C. A series of experimental research was conducted on cold start efficiency optimization strategy of a certain type of diesel engine at 3000m altitude and -20°C. In parallel, a diesel engine model was constructed through Chemkin to explore the influence of the three parameters of compression ratio, stroke length, and fuel injection advance angle on the first cold start cycle of diesel engine at 4000m altitude and -20°C.
Technical Paper

Economic Analysis of Online DC-Drive System for Long Distance Heavy-Duty Transport Vehicle Incorporating Multi-Factor Sensitivities

2024-04-09
2024-01-2452
Currently, the rapid expansion of the global road transport industry and the imperative to reduce carbon emissions are propelling the advancement of electrified highways (EH). In order to conduct a comprehensive economic analysis of EH, it is crucial to develop a detailed /8.and comprehensive economic model that takes into account various transportation modes and factors that influence the economy. However, the existing economic models for EH lack comprehensiveness in terms of considering different transportation modes and economic factors. This study aims to fill this gap by designing an economic model for an EH-based Online DC-driven system (ODS) for long distance heavy-duty transport vehicle incorporating multi-factor sensitivities. Firstly, the performance parameters of the key components of the system are calculated using vehicle dynamics equations which involves selecting and matching the relevant components and determining the fundamental cost of vehicle transformation.
Technical Paper

Impact of a Split-Injection Strategy on Energy-Assisted Compression-Ignition Combustion with Low Cetane Number Sustainable Aviation Fuels

2024-04-09
2024-01-2698
The influence of a split-injection strategy on energy-assisted compression-ignition (EACI) combustion of low-cetane number sustainable aviation fuels was investigated in a single-cylinder direct-injection compression-ignition engine using a ceramic ignition assistant (IA). Two low-cetane number fuels were studied: a low-cetane number alcohol-to-jet (ATJ) sustainable aviation fuel (SAF) with a derived cetane number (DCN) of 17.4 and a binary blend of ATJ with F24 (Jet-A fuel with military additives, DCN 45.8) with a blend DCN of 25.9 (25 vol.% F24, 75 vol.% ATJ). A pilot injection mass sweep (3.5-7.0 mg) with constant total injection mass and an injection dwell sweep (1.5-3.0 ms) with fixed main injection timing was performed. Increasing pilot injection mass was found to reduce cycle-to-cycle combustion phasing variability by promoting a shorter and more repeatable combustion event for the main injection with a shorter ignition delay.
Technical Paper

Real-Time Cornering Stiffness Estimation and Road Friction State Classification under Normal Driving Conditions

2024-04-09
2024-01-2650
The tire cornering stiffness plays a vital role in the functionality of vehicle dynamics control systems, particularly when it comes to stability and path tracking controllers. This parameter relies on various external variables such as the tire/ambient temperature, tire wear condition, the road surface state, etc. Ensuring a reliable estimation of the cornering stiffness value is crucial for control systems. This ensures that these systems can accurately compute actuator requests in a wide range of driving conditions. In this paper, a novel estimation method is introduced that relies solely on standard vehicle sensor data, including data such as steering wheel angles, longitudinal acceleration, lateral acceleration, yaw rate, and vehicle speed, among others. Initially, the vehicle's handling characteristics are deduced by estimating the understeer gradient.
Technical Paper

Design and Sizing Methodology of Electric Vehicle Powertrain to Achieve Optimal Range and Performance

2024-04-09
2024-01-2160
Battery electric vehicles are quickly gaining momentum to improve vehicle fuel efficiency and emission reduction. However, they must be designed to provide adequate range on a single charge combined with good acceleration performance, top speed, gradeability, and fast charging times. The paper presents a model for sizing the power train of an electric vehicle, including the power electronic converter, electric motor, and battery pack. A major assumption is that an optimal wheel slip rate can be achieved by modern vehicles using slip control systems. MATLAB/Simulink was used to model the vehicle powertrain. Simulations were conducted based on different speed and acceleration profiles. The purpose of the study focused on the motor and power electronics sizing requirements to achieve optimal range and performance.
Technical Paper

Road Recognition Technology Based on Intelligent Tire System Equipped with Three-Axis Accelerometer

2024-04-09
2024-01-2295
Under complex and extreme operating conditions, the road adhesion coefficient emerges as a critical state parameter for tire force analysis and vehicle dynamics control. In contrast to model-based estimation methods, intelligent tire technology enables the real-time feedback of tire-road interaction information to the vehicle control system. This paper proposes an approach that integrates intelligent tire systems with machine learning to acquire precise road adhesion coefficients for vehicles. Firstly, taking into account the driving conditions, sensor selection is conducted to develop an intelligent tire hardware acquisition system based on MEMS (Micro-Electro-Mechanical Systems) three-axis acceleration sensors, utilizing a simplified hardware structure and wireless transmission mode. Secondly, through the collection of real vehicle experiment data on different road surfaces, a dataset is gathered for machine learning training.
Technical Paper

Prediction of Aerodynamic Drag in SUVs with Different Specifications by Using Large-Eddy Simulations

2024-04-09
2024-01-2525
Emission regulations are becoming more stringent, as global temperature continues to rise due to the increasing greenhouse gases in the atmosphere. Battery electric vehicles (BEV), which have zero tailpipe emissions, are expected to become widespread to solve this problem. As the powertrain of BEV is more efficient than conventional powered vehicles, the proportion of energy loss during driving due to aerodynamic drag becomes greater. Therefore, reducing aerodynamic drag for improved energy efficiency is important to extend the pure electric range. At Honda, Computational Fluid Dynamics (CFD) and wind tunnel testing are used to optimize vehicle shape and reduce aerodynamic drag. Highly accurate CFD is essential to efficiently guide the development process towards reducing aerodynamic drag. Specifically, the prediction accuracy for the exterior shape, underfloor devices, tires, and wheels must meet development requirements.
Technical Paper

An advanced tire modeling methodology considering road roughness for chassis control system development

2024-04-09
2024-01-2317
As the automotive industry accelerates its virtual engineering capabilities, there is a growing requirement for increased accuracy across a broad range of vehicle simulations. Regarding control system development, utilizing vehicle simulations to conduct ‘pre-tuning’ activities can significantly reduce time and costs. However, achieving an accurate prediction of, e.g., stopping distance, requires accurate tire modeling. The Magic Formula tire model is often used to effectively model the tire response within vehicle dynamics simulations. However, such models often: i) represent the tire driving on sandpaper; and ii) do not accurately capture the transient response over a wide slip range. In this paper, a novel methodology is developed using the MF-Tyre/MF-Swift tire model to enhance the accuracy of ABS braking simulations.
Technical Paper

Performance Analysis of Fuel Cells for High Altitude Long Flight Multi-rotor Drones

2024-04-09
2024-01-2177
In recent years, the burgeoning applications of hydrogen fuel cells have ignited a growing trend in their integration within the transportation sector, with a particular focus on their potential use in multi-rotor drones. The heightened mass-based energy density of fuel cells positions them as promising alternatives to current lithium battery-powered drones, especially as the demand for extended flight durations increases. This article undertakes a comprehensive exploration, comparing the performance of lithium batteries against air-cooled fuel cells, specifically within the context of multi-rotor drones with a 3.5kW power requirement. The study reveals that, for the specified power demand, air-cooled fuel cells outperform lithium batteries, establishing them as a more efficient solution.
Technical Paper

Enhancing Mechanical Behavior of As-Built Polyamide 6+Glass Fiber Produced with Fused Filament Fabrication via Varying Infill Pattern

2024-03-15
2024-01-5035
Additive manufacturing is currently being investigated for the production of components aiming for near net shape. The presence of chopped glass fibers with PA6 increases the melt viscosity and also changes the coefficients of thermal expansion and increase the heat resistance. The great dimensional stability obtained with the fusion of the PA6 with the fiber results in an extremely durable material even in adverse environments for many other materials used in 3D printing. PA6 is a material oriented for users who need to make structural parts and exposed to high mechanical stresses. The impact, test tensile, and flexural results for as-built PA6 with various infill patterns, including grid, triangle, trihexagon, and cubic, are tested.
Technical Paper

Proposal for Relaxation of Airspace Restrictions Based on Flight-Continuation Possibility of UAVs in Event of Failure

2024-03-05
2024-01-1912
The flight area of drones and other unmanned aerial vehicles (UAVs) had been highly restricted but has been relaxing, including flights beyond the scope of sight. Deregulation without aircraft-reliability improvement increases the risk of accidents. However, demanding high reliability for all aircraft leads to an increase in the price of the aircraft. Therefore, if airspace restrictions are relaxed for more reliable aircraft, the cost of higher reliability and its benefits can be balanced. This will improve efficiency and optimize cost-effectiveness. The purpose of this proposal is to balance the cost of aircraft-reliability improvement (which allows flight to continue in the event of a failure) and its advantages. Specifically, the author proposes rules that apply more relaxed airspace restrictions to UAVs with higher FCLs (Flight Continuity Possibility Levels) and stricter airspace restrictions to those with lower FCLs.
Technical Paper

Modelling and Simulation of Cooling of Heat Sink Using Alumina Nano Reinforced PCM

2024-03-05
2024-01-1913
An escalating demand for improved heat dissipation from electronic components is driven by the imperative need to eliminate the accumulated heat that gradually builds up over time. In this study, a 3-D simulation was carried out to analyze the heat distribution performance of a heat sink based on PCM/NePCM. The heat sink was subjected to varying heat fluxes ranging from 3-7 kW/m2, and its performance was evaluated over time. The findings of the computational research indicate that using PCM assists in maintaining the heat sink base's temperature within lower bounds, and leads to uniform melting within the heat sink. Further, inclusion of Alumina nano particles integration in PCM enhanced the performance of heat sink. The percentage reduction in charging time of NePCM without fins (φ = 1%, 2.5% and 5%) in comparison to the Pure-PCM (φ = 0%) is 6%, 11% and 51% respectively at 6 kW/m2 input.
X