Refine Your Search

Search Results

Technical Paper

Analysis of Error Mechanisms of Vibrating Gyroscopes Operating in a Slowly Changing Environment

2024-04-17
2024-01-5044
This study presents the constructed electromechanical model and the analysis of the obtained nonlinear systems. An algorithm for compensating the nonlinear drift of a gyroscope in a microelectromechanical system is proposed. Tests were carried out on a precision rotating base, with the angular velocity changing as per the program. Bench testing the gyroscope confirmed the results, which were also supported by the parameter calibration. The analytical method was further validated through experimental results, and a correction algorithm for the mathematical model was developed based on the test results. After calibration and adjusting the gyroscope’s systematic flaws, the disparity in calculating the precession angle was within 1/100th of an angular second over an interval of approximately 1000 s. Currently, research is underway on the new nonlinear dynamic characteristics of electrostatically controlled microstructures.
Technical Paper

Simulator Development for Vehicle Localization Using Low Earth Orbit Satellites

2024-04-09
2024-01-2846
This paper investigates the utilization of Low Earth Orbit (LEO) satellites for vehicle localization and conducts a comparative analysis with traditional Global Navigation Satellite Systems (GNSS)-based methods. With the rise of LEO satellite constellations, such as Starlink, LEO-based vehicle localization may offer solutions to GNSS-related challenges. With a large number of satellites and short communication distance, the LEO-based method has great potential to improve accuracy, reduce warm-up time, and provide a robust localization solution for vehicle applications. In this paper, a dedicated LEO satellite simulator is presented, adaptable to various LEO constellations, making it relevant for evolving technologies beyond older LEO systems like Orbcomm or Iridium. The simulator includes satellite trajectory generation, observable satellite identification, and vehicle localization.
Technical Paper

Implementing Ordinary Differential Equation Solvers in Rust Programming Language for Modeling Vehicle Powertrain Systems

2024-04-09
2024-01-2148
Efficient and accurate ordinary differential equation (ODE) solvers are necessary for powertrain and vehicle dynamics modeling. However, current commercial ODE solvers can be financially prohibitive, leading to a need for accessible, effective, open-source ODE solvers designed for powertrain modeling. Rust is a compiled programming language that has the potential to be used for fast and easy-to-use powertrain models, given its exceptional computational performance, robust package ecosystem, and short time required for modelers to become proficient. However, of the three commonly used (>3,000 downloads) packages in Rust with ODE solver capabilities, only one has more than four numerical methods implemented, and none are designed specifically for modeling physical systems. Therefore, the goal of the Differential Equation System Solver (DESS) was to implement accurate ODE solvers in Rust designed for the component-based problems often seen in powertrain modeling.
Technical Paper

Vehicle Dynamics Model for Simulation Use with Autoware.AI on ROS

2024-04-09
2024-01-1970
This research focused on developing a methodology for a vehicle dynamics model of a passenger vehicle outfitted with an aftermarket Automated Driving System software package using only literature and track based results. This package consisted of Autoware.AI (Autoware ®) operating on Robot Operating System 1 (ROS™) with C++ and Python ®. Initial focus was understanding the basics of ROS and how to implement test scenarios in Python to characterize the control systems and dynamics of the vehicle. As understanding of the system continued to develop, test scenarios were adapted to better fit system characterization goals with identification of system configuration limits. Trends from on-track testing were identified and paired with first-order linear systems to simulate physical vehicle responses to given command inputs. Sub-models were developed and simulated in MATLAB ® with command inputs from on-track testing.
Technical Paper

A Survey of Vehicle Dynamics Models for Autonomous Driving

2024-04-09
2024-01-2325
Autonomous driving technology is more and more important nowadays, it has been changing the living style of our society. As for autonomous driving planning and control, vehicle dynamics has strong nonlinearity and uncertainty, so vehicle dynamics and control is one of the most challenging parts. At present, many kinds of specific vehicle dynamics models have been proposed, this review attempts to give an overview of the state of the art of vehicle dynamics models for autonomous driving. Firstly, this review starts from the simple geometric model, vehicle kinematics model, dynamic bicycle model, double-track vehicle model and multi degree of freedom (DOF) dynamics model, and discusses the specific use of these classical models for autonomous driving state estimation, trajectory prediction, motion planning, motion control and so on.
Technical Paper

Vehicle Yaw Stability Model Predictive Control Strategy for Dynamic and Multi-Objective Requirements

2024-04-09
2024-01-2324
Vehicle yaw stability control (YSC) can actively adjust the working state of the chassis actuator to generate a certain additional yaw moment for the vehicle, which effectively helps the vehicle maintain good driving quality under strong transient conditions such as high-speed turning and continuous lane change. However, the traditional YSC pursues too much driving stability after activation, ignoring the difference of multi-objective requirements of yaw maneuverability, actuator energy consumption and other requirements in different vehicle stability states, resulting in the decline of vehicle driving quality. Therefore, a vehicle yaw stability model predictive control strategy for dynamic and multi-objective requirements is proposed in this paper. Firstly, the unstable characteristics of vehicle motion are analyzed, and the nonlinear two-degree-of-freedom vehicle dynamics models are established respectively.
Technical Paper

A Suspension Tuning Parameter Study for Brake Pulsation

2024-04-09
2024-01-2319
Brake pulsation is a low frequency vibration phenomenon in brake judder. In this study, a simulation approach has been developed to understand the physics behind brake pulsation employing a full vehicle dynamics CAE model. The full vehicle dynamic model was further studied to understand the impact of suspension tuning variation to brake pulsation performance. Brake torque variation (BTV) due to brake thickness variation from uneven rotor wear was represented mathematically in a sinusoidal form. The wheel assembly vibration from the brake torque variation is transmitted to driver interface points such as the seat track and the steering wheel. The steering wheel lateral acceleration at the 12 o’clock position, driver seat acceleration, and spindle fore-aft acceleration were reviewed to explore the physics of brake pulsation. It was found that the phase angle between the left and right brake torque generated a huge variation in brake pulsation performance.
Technical Paper

Data-Enabled Human-Machine Cooperative Driving Decoupled from Various Driver Steering Characteristics and Vehicle Dynamics

2024-04-09
2024-01-2333
Human driving behavior's inherent variability, randomness, individual differences, and dynamic vehicle-road situations give human-machine cooperative (HMC) driving considerable uncertainty, which affects the applicability and effectiveness of HMC control in complex scenes. To overcome this challenge, we present a novel data-enabled game output regulation approach for HMC driving. Firstly, a global human-vehicle-road (HVR) model is established considering the varied driver's steering characteristic parameters, such as delay time, preview time, and steering gain, as well as the uncertainty of tire cornering stiffness and variable road curvature disturbance. The robust output regulation theory has been employed to ensure the global DVR system's closed-loop stability, asymptotic tracking, and disturbance rejection, even with an unknown driver's internal state. Secondly, an interactive shared steering controller has been designed to provide personalized driving assistance.
Technical Paper

Analysis and Design of Suspension State Observer for Wheel Load Estimation

2024-04-09
2024-01-2285
Tire forces and moments play an important role in vehicle dynamics and safety. X-by-wire chassis components including active suspension, electronic powered steering, by-wire braking, etc can take the tire forces as inputs to improve vehicle’s dynamic performance. In order to measure the accurate dynamic wheel load, most of the researches focused on the kinematic parameters such as body longitudinal and lateral acceleration, load transfer and etc. In this paper, the authors focus on the suspension system, avoiding the dependence on accurate mass and aerodynamics model of the whole vehicle. The geometry of the suspension is equated by the spatial parallel mechanism model (RSSR model), which improves the calculation speed while ensuring the accuracy. A suspension force observer is created, which contains parameters including spring damper compression length, push rod force, knuckle accelerations, etc., combing the kinematic and dynamic characteristic of the vehicle.
Technical Paper

Modeling and Validation of the Tire Friction on Wet Road

2024-04-09
2024-01-2307
In order to study the tire friction characteristics under wet skid surface, the “pseudo” hydrodynamic pressure bearing effect is used to be equivalent to the hydrodynamics of water film, and an advanced Lugre tire hydroplaning dynamic model is developed by combining the arbitrary pressure distribution function. The water hydroplaning dynamic tests were carried out for 285/70R19.5 tire under wet of different water film thickness and dry conditions, and the parameters of the advanced Lugre tire dynamic model were identified. The results show that the tire water-skiing model proposed in this paper can effectively simulate the friction characteristics of tires under different water film thicknesses. Under dry conditions, 0.5mm water film and 1mm water film road conditions, the relative errors of the maximum tire friction coefficient between the tested and advanced Lugre tire model are 1.11%, 0.12% and 0.16%, respectively.
Technical Paper

Vehicle Drop Test Correlation for Two-Wheeler (Motorcycle) Using Multibody Simulation

2024-04-09
2024-01-2308
Off-roading is the scenario of driving a vehicle on unpaved surfaces such as sand, gravel, riverbeds, rocks, and other natural terrain. Vehicle designed for that purpose requires jumping from height due to uneven surfaces/patches. This also requires them to sustain a high amount of loads acting upon them on impact. Thus, off-roading vehicles should not only provide intended vehicle dynamics performance but at the same time should be durable as well. Drop test which is done in a controlled environment is a widely used method to validate the durability of vehicle in such scenarios wherein the vehicle is dropped from a certain predefined height. In Multibody dynamics simulation, drop test was replicated and acceleration data computed at different locations in the vehicle were correlated with actual physical test data. Correlation was done for different drop heights. This paper presents relevant details of the virtual vehicle modeling, loadcase, test data & subsequent correlation.
Technical Paper

An Active Suspension Control Strategy for Planet Rover on Rough Terrain

2024-04-09
2024-01-2300
The soft and rough terrain on the planet's surface significantly affects the ride and safety of rovers during high-speed driving, which imposes high requirements for the control of the suspension system of planet rovers. To ensure good ride comfort of the planet rover during operation in the low-gravity environment of the planet's surface, this study develops an active suspension control strategy for torsion spring and torsional damper suspension systems for planet rovers. Firstly, an equivalent dynamic model of the suspension system is derived. Based on fractal principles, a road model of planetary surface is established. Then, a fuzzy-PID based control strategy aimed at improving ride comfort for the planet rover suspension is established and validated on both flat and rough terrains.
Technical Paper

Study on Aircraft Wing Collision Avoidance through Vision-Based Trajectory Prediction

2024-04-09
2024-01-2310
When the aircraft towing operations are carried out in narrow areas such as the hangars or parking aprons, it has a high safety risk for aircraft that the wingtips may collide with the surrounding aircraft or the airport facility. A real-time trajectory prediction method for the towbarless aircraft taxiing system (TLATS) is proposed to evaluate the collision risk based on image recognition. The Yolov7 module is utilized to detect objects and extract the corresponding features. By obtaining information about the configuration of the airplane wing and obstacles in a narrow region, a Long Short-Term Memory (LSTM) encoder-decoder model is utilized to predict future motion trends. In addition, a video dataset containing the motions of various airplane wings in real traction scenarios is constructed for training and testing.
Technical Paper

Dynamic Modeling of Quadrotor-Slung-Load System: A Model Based on the Quasi-Coordinates Approach

2024-04-09
2024-01-2312
With the development of hardware and control theory, the application of quadcopters is constantly expanding. Quadcopters have emerged in many fields, including transportation, exploration, and object grabbing and placement. These application scenarios require accurate, stable, and rapid control, and a suitable dynamic model is one of the prerequisites. At present, many works are related to it, most of which are modeled using the Newton-Euler method. Some works have also adopted other methods, including the Lagrangian and Hamiltonian methods. This article proposes a new method that solves the Hamiltonian equation of a quadcopter expressed in quasi-coordinate. The external forces and motion of the body are expressed in the quasi-coordinate system of the body, and solved through the Hamiltonian equation. This method simplifies operations and improves computational efficiency. Additionally, a single pendulum is attached to the quadcopter to simulate application scenarios.
Technical Paper

A Study on Handling Steering Angle Sensor Failure on Redundancy-Based EPS Systems

2024-04-09
2024-01-2246
A redundant system refers to a system that operates identical unit systems simultaneously to enhance robustness to fault. In particular, considering system complexity, a redundant system consisting of two identical unit systems is widely used. However, dual-system redundancy can detect the presence of malfunction when the outputs of the two unit systems differ, but it is challenging to identify the normally functioning unit system. Therefore, the functionality can degrade or be interrupted even when a normally operating unit system is present. Hence, research is actively ongoing to address the challenge of identifying the normally functioning unit system. This study proposes an algorithm to identify the normally operating sensor in the event of a steering angle sensor fault in a redundant Electronic Power Steering (EPS) system. In this paper, an Extended Kalman Filter is designed based on the Bicycle model of vehicle dynamics to estimate the steering angle of the steering wheel.
Technical Paper

Multi-Objective Optimization of Occupant Survival Space of a Medium-Duty Vehicle under Rollover Condition

2024-04-09
2024-01-2263
Due to the high center of gravity of medium-duty vehicles, rollover accidents can easily occur during high-speed cornering and lane changes. In order to prevent the deformation of the body structure, which would restrict the survival space and cause compression injuries to occupants, it is necessary to investigate methods for mitigating these incidents. This paper establishes a numerical model of right-side rollover for a commercial medium-duty vehicle in accordance with ECE R66 regulations, and the accuracy of the model is verified by experiment. According to the results, the material and size parameters of the key components of the right side pillar are selected as design variables. The response result matrix was constructed using the orthogonal design method for total mass, energy absorption, maximum collision acceleration, and minimum distance from the survival space.
Technical Paper

Charging Load Estimation for a Fleet of Autonomous Vehicles

2024-04-09
2024-01-2025
In intelligent surveillance and reconnaissance (ISR) missions, multiple autonomous vehicles, such as unmanned ground vehicles (UGVs) or unmanned aerial vehicles (UAVs), coordinate with each other for efficient information gathering. These vehicles are usually battery-powered and require periodic charging when deployed for continuous monitoring that spans multiple hours or days. In this paper, we consider a mobile host charging vehicle that carries distributed sources, such as a generator, solar PV and battery, and is deployed in the area where the UAVs and UGVs operate. However, due to uncertainties, the state of charge of UAV and UGV batteries, their arrival time at the charging location and the charging duration cannot be predicted accurately.
Technical Paper

Digital Twin Based Multi-Vehicle Cooperative Warning System on Mountain Roads

2024-04-09
2024-01-1999
Compared with urban areas, the road surface in mountainous areas generally has a larger slope, larger curvature and narrower width, and the vehicle may roll over and other dangers on such a road. In the case of limited driver information, if the two cars on the mountain road approach fast, it is very likely to occur road blockage or even collision. Multi-vehicle cooperative control technology can integrate the driving data of nearby vehicles, expand the perception range of vehicles, assist driving through multi-objective optimization algorithm, and improve the driving safety and traffic system reliability. Most existing studies on cooperative control of multiple vehicles is mainly focused on urban areas with stable environment, while ignoring complex conditions in mountainous areas and the influence of driver status. In this study, a digital twin based multi-vehicle cooperative warning system was proposed to improve the safety of multiple vehicles on mountain roads.
Technical Paper

Engineering Requirements that Address Real World Hazards from Using High-Definition Maps, GNSS, and Weather Sensors in Autonomous Vehicles

2024-04-09
2024-01-2044
Evaluating real-world hazards associated with perception subsystems is critical in enhancing the performance of autonomous vehicles. The reliability of autonomous vehicles perception subsystems are paramount for safe and efficient operation. While current studies employ different metrics to evaluate perception subsystem failures in autonomous vehicles, there still exists a gap in the development and emphasis on engineering requirements. To address this gap, this study proposes the establishment of engineering requirements that specifically target real-world hazards and resilience factors important to AV operation, using High-Definition Maps, Global Navigation Satellite System, and weather sensors. The findings include the need for engineering requirements to establish clear criteria for a high-definition maps functionality in the presence of erroneous perception subsystem inputs which enhances the overall safety and reliability of the autonomous vehicles.
X