Refine Your Search

Search Results

Journal Article

On Electromagnetic Shielding in Composite Aircraft: An Applied Electromagnetic Approach

2014-12-01
2014-01-9004
Effectiveness of current electromagnetic shielding techniques in composite aircraft has been called into question several times before and is a subject of interest and research in the aerospace industry. We present an analytical approach to understand the issues in detail. It was found using first order approximations that a panel with Aluminum expanded metallic foil (ExMF) along with carbon fiber plies used on composite aircraft provides fair albeit lower electromagnetic shielding from source frequencies of a few KHz until well into MHz range when compared to an aluminum panel used on metallic aircraft. This was primarily attributed to relatively large skin depth value at low frequencies which was due to: a) low electrical conductivity of aluminum ExMF when compared to bulk aluminum; b) low electrical conductivity of resin impregnated carbon fiber layers and; c) very thin layer of aluminum ExMF used.
Journal Article

A New Method for Monitoring Gears Surface Failures Using Enhanced Image Registration Approach

2014-09-01
2014-01-9003
In this paper, we present an image registration approach to cope with inter-image illumination changes of arbitrary shape in order to monitor the development of micro-pitting in transmission gears. Traditional image registration approaches do not typically account for inter-image illumination variations that negatively affect the geometric registration precision. Given a set of captured images of gear surface degradation with different exposure times and geometric deformations, the correlation between the resulting aligned images is compared to a reference one. The presented image registration approach is used with an online health monitoring system involving the analysis of vibration, acoustic emission and oil debris to follow the development of micro-pitting in transmission gears. The proposed monitoring system achieves more registration precision compared to competing systems.
Journal Article

Aircraft Radial Engine CFD Cooling Model

2014-10-13
2014-01-2884
The article presents convective heat transfer phenomenon by analytically and empirically taken data and CFD based model analysis. 1000 hp ASz-62IR aircraft radial engine is the object of research. This engine is being continuously operated on M18 Dromader and AN-2 aircraft. To recount heat oriented phenomena a three-dimensional CFD model was developed that accounts circumfluent flow around cylinder and cylinder head engine surfaces. The geometry includes M18 Dromader frontal airframe elements to account their influence on cooling air flow. The simulation has been conducted as a steady-state flow. Geometry and setup specific swirls and backflows were observed that increase cylinder and cylinder head rear side heat transfer coefficients. Flow along cooling fins was analysed, connecting their heat transfer coefficient dependency. Results show that local air velocity has big influence on heat flux passed by fin walls.
Journal Article

Optimization of Multiple Quality Characteristics for Dry Drilling Ti-6Al-4V Using TiAlN-Coated Carbide Tool

2015-01-01
2014-01-9105
The present paper aims at optimization of multiple quality characteristics (dimensional accuracy and surface roughness) in dry drilling Ti-6Al-4V using TiAlN-coated carbide tool while the controllable factors are spindle speed and feed rate. To do so, desirability methodology is used to explore optimum conditions for concurrent optimization of the addressed quality characteristics. Central composite design (CCD) is used for experimentation. In order to create reliable models describing the process behavior, response surface methodology (RSM) is used.
Journal Article

Analytical Modelling of Diesel Powertrain Fuel System and Consumption Rate

2015-01-01
2014-01-9103
Vehicle analytical models are often favorable due to describing the physical phenomena associated with vehicle operation following from the principles of physics, with explainable mathematical trends and with extendable modeling to other types of vehicle. However, no experimentally validated analytical model has been developed as yet of diesel engine fuel consumption rate. The present paper demonstrates and validates for trucks and light commercial vehicles an analytical model of supercharged diesel engine fuel consumption rate. The study points out with 99.6% coefficient of determination that the average percentage of deviation of the steady speed-based simulated results from the corresponding field data is 3.7% for all Freeway cycles. The paper also shows with 98% coefficient of determination that the average percentage of deviation of the acceleration-based simulated results from the corresponding field data under negative acceleration is 0.12 %.
Technical Paper

Research on Locked Wheel Protection Function of Aircraft Brake System

2021-10-11
2021-01-1269
Locked wheel protection is an important part of antiskid control for aircraft brake control system. Locked wheel protection compares the wheel speed of two or more wheels, if one of the wheels is too slow, locked wheel protection releases the brake pressure on the slow wheel. This work aims to study the control logic for locked wheel protection. Locked wheel protection control logic consists of 3 key factors: paired wheels, active threshold and inhibit velocity. Focus on comparison different options of these 3 factors, all aspects of control logic for locked wheel protection had been expounded in this study. Simulation and calculation analysis is applied for different locked wheel strategies to evaluate the effect. One conclusion is that the greatest wheel speed of the wheel under control shall be set as a reference speed for locked wheel protection. This study provide the basis to design a proper locked wheel protection function of aircraft brake control system.
Technical Paper

Infrared Signature of Combat Aircraft Incorporating Weight Penalty due to the Divergent Section of the Convergent-Divergent Nozzle

2021-09-01
2021-01-6002
Performance penalties associated with infrared (IR)-signature suppression (IRSS), e.g., increased engine back pressure, weight, drag, cost, and complexity, can shift the engine operating point to higher combustion temperatures. Extra weight degrades aircraft flight performance in terms of reduced range, higher length needed for takeoff, reduced maneuverability, etc. Lift-induced drag penalty due to increased weight shifts the aircraft gas turbine engine operating point to a higher combustion temperature. But the divergent section of the convergent-divergent (C-D) nozzle gives the extra thrust up to optimal flow expansion, which more than compensates the increased lift-induced drag corresponding to its weight. Thus, for the same thrust, an engine with a C-D nozzle operates at a lower combustion temperature than with a convergent nozzle.
Technical Paper

Mathematical Modeling of the Longitudinal Motion of a Vehicle with a Continuously Variable Transmission

2021-09-21
2021-01-1237
The Continuously Variable Transmission (CVT) is a widely adopted transmission system. The operation of a CVT is simple, but successfully foretelling the longitudinal motion of a vehicle that utilizes this transmission is sophisticated. As a result, different vehicles taking part in BAJA-SAE competitions were developed using various strategies to model the vehicle’s longitudinal dynamics and CVT operation. This article aims to provide a tool for obtaining a quantitative estimate of the longitudinal performance of a CVT equipped vehicle and for the selection of an optimal drive-train gear ratio for such a vehicle. To this end, this article proposes a novel, relatively simple, and reasonably accurate mathematical approach for modeling the longitudinal motion of a vehicle utilizing a CVT, which was developed by a novel integration of existing vehicle dynamics concepts.
Technical Paper

Medium and High-Frequency Vibration Analysis of Thin Plates by a Hybrid Distributed Transfer Function Method

2021-08-31
2021-01-1052
Vibrations of plates are widely seen in various applications of automobile, aerospace, mechanical and civil engineering. Vibration analysis of plates in medium and high-frequency regions plays an important role in optimal design and safe operation of machines and structures in these applications. Medium and high-frequency vibration analysis of plates is usually performed by using numerical methods. Proposed in this paper is a new analytical solution method for mid- and high-frequency analysis of thin rectangular plates modeled by the Kirchhoff-Love plate theory. In the development, analytical solutions for a class of thin plates are obtained based on a hybrid formulation that combines the Distributed Transfer Function Method (DTFM) and modal expansion. The proposed method, which is an extension of the DTFM for one-dimensional continua, is called the hybrid Distributed Transfer Function Method (hybrid DTFM).
Technical Paper

Autonomous Gesture-Based Control Drone Design

2021-08-16
2021-01-6000
The current drone market holds a lot of low-cost drones that can be controlled either remotely or autonomously. The command controlling signals can be deployed by using different methods and techniques to enhance the capabilities and missions of the drone. The microcontroller is usually used as the drone brain. Motion control and virtual reality (VR) techniques allow the user new possibilities for a more dynamic control experience. The goal of the present work is to design, develop, and deliver a working prototype of an enhanced VR motion-controlled drone. The developed prototype is an integrated system that includes an off-the-shelf drone, accelerometer and gyroscope unit, flex sensor, gloves, digital potentiometer, VR headset, and microcontroller. The flex sensor attached to the hand gloves allows a fully autonomous control of the drone using the movement of the hand. Hence, the gloves will allow for a more dynamic control of the drone.
Technical Paper

Real Time Vehicle Dynamics for Smart Driving

2021-09-22
2021-26-0085
In last few years there has been great research to increase safety of on-road vehicles by providing information of various vehicle parameters to the user/driver while driving on road. Many algorithms have been developed to assess the vehicle run time situations and enable vehicle ECU to take decisions for autonomous driving. These algorithms are derived using data captured from sensors predominantly make use of vehicle dynamic information. The design proposed in this paper discusses capturing of two important and critical vehicle run time parameters i.) Vehicle tire pressure and the ii.) Road gradient. These parameters then help us in determining the effective fuel efficiency of the vehicle and approximate distance that user can drive with the amount of fuel remaining in the tank.
Technical Paper

Appropriate Damping Loss Factor of Vehicle Interior Cavity for Valid Application of Statistical Energy Analysis

2020-09-30
2020-01-1524
It is known that SEA is a rapid and simple methodology for analyzing complex vibroacoustic systems. However, the SEA principle is not always valid and one has to be careful about the physical conditions at which the SEA principle is acceptable. In this study, the appropriate damping loss factor of the vehicle interior cavity is studied in the viewpoint of the modal overlap factor of the cavity and the decay per mean free path (DMFP) of the cavity. Virtual SEA tests are performed with an FE model combination, which is suggested by a previous study of Stelzer et al. for the simulation of the sound transmission loss (STL) of vehicle panel structure. The FE model combination is consisting of the body in white (BIW), an acoustical-excited hemisphere-shaped exterior cavity, and the interior cavity. It is found that the DMFP of the interior cavity is appropriate between 0.5 ~ 1 dB for applying SEA principle.
Technical Paper

Direction Specific Analysis of Psychoacoustics Parameters inside Car Cockpit: A Novel Tool for NVH and Sound Quality

2020-09-30
2020-01-1547
Psychoacoustics parameters are widely employed in automotive field for objective evaluation of Sound Quality (SQ) of vehicle cabins and their components. The standard approach relies on binaural recordings from which numerical values and curves are calculated. In addition, head-locked binaural listening playback can be performed. The Virtual Reality (VR) technology recently started to diffuse also in automotive field, bringing new possibilities for enhanced and immersive listening sessions, thanks to the usage of massive microphone arrays instead of binaural microphones. In this paper, we combine both solutions: the principal SQ parameters are derived from multichannel recordings. This allows computing a map of direction-dependent values of SQ parameters. The acquisition system consists in a spherical microphone array with 32 capsules and a multiple-lens camera for capturing a panoramic equirectangular background image.
Technical Paper

Lean-Burn Stratified Alcohol Fuels Engines of Power Density up to 475 kW/Liter Featuring Super-Turbocharging, Rotary Valves, Direct Injection, and Jet Ignition

2020-09-15
2020-01-2036
Direct injection (DI) and jet ignition (JI), plus assisted turbocharging, have been demonstrated to deliver high efficiency, high power density positive ignition (PI) internal combustion engines (ICEs) with gasoline. Peak efficiency above 50% and power density of 340 kW/liter at the 15,000 rpm revolution limiter working overall λ=1.45 have been report-ed. Here we explore the further improvement in power density that may be obtained by replacing gasoline with ethanol or methanol, thanks to the higher octane number and the larger latent heat of vaporization, which translates in an increased resistance to knock, and permits to have larger compression ratios. Results of simulations are proposed for a numerical engine that uses rotary valves rather than poppet valves, while also using mechanical, rather than electric, assisted turbocharging. While with gasoline, the power density is 410-420 kW/liter, the use of oxygenates permits to achieve up to 475 kW/liter working with methanol.
Technical Paper

Parameterization of Particles Emitted from a Jet Engine during Stationary Tests

2020-09-15
2020-01-2202
Particles are one of the pollutants that affect air quality. The assessment of air pollution degree is conducted, among others, on the basis of parameters regarding the mass concentration of particles (PM2.5 and PM10). The growing awareness of the processes accompanying particles emissions is causing a growing interest in their other parameters such as number and diameter. Particles dimensions are important in determining their impact on human health. The most dangerous are particles of the smallest size; characteristic for internal combustion engines, mainly jet engines. The assessment of individual means of transport from the point of view of their ecological aspects is carried out in relation to fuel consumption, while in the case of particles; the analysis must be extended by their individual parameters. The article presents a comprehensive analysis of particles emissions from a jet engine during stationary tests.
Technical Paper

Methodology and Results of Testing an Impact of F-34 Fuel on the Engine Reliability

2020-09-15
2020-01-2133
An application of the new kind of the fuel for the diesel engine requires to conduct the qualification tests of the engines powered by this his fuel which allow assessing an impact of fuel on the engine reliability. Such a qualification test of the piston and turbine engines of the aircraft stationed on the ground and land vehicles is described in the NATO standardisation agreement (STANAG) 4195 as the AEP-5 test. The methodology and selected results of the qualification tests of the SW-680 turbocharged multi-purpose diesel engine fuelled with F-34 fuel have been presented in this paper. A dynamometric stand with the SW-680 engine has been described. Based on the preliminary results of the investigation it has been found that a change in a type of the fuel from IZ-40 diesel fuel into F-34 kerosene-type one has reduced a maximum engine torque by about 4%. This has been primarily due to a lower fuel density of F-34 by about 3%.
Technical Paper

Equivalent Damping Added by Sound Package

2020-04-14
2020-01-1397
In Automotive and Aerospace industries, sound package has an important role to control vehicle noise in order to improve passenger comfort and reduce environmental noise pollution. The most known approaches used to model the sound package are the Transfer Matrix Method (TMM) combined with Statistical Energy Analysis (SEA). The Transfer Matrix Method based approach is extensively used and well-validated for predicting the transmission loss and other vibro-acoustic indicators of multi-layer structures. However, to the best of our knowledge, the equivalent damping due to the multilayer has not been addressed yet in the literature, and it's a novel approach. In this paper, simplified formulations using TMM to compute the equivalent damping will be recalled, and an experimental study will be conducted to assess the add-on damping by sound package for different configurations.
Technical Paper

Virtual Assessment of Suspension Characteristics in Customized Electric Vehicle

2021-09-22
2021-26-0326
Vehicle suspension is a critical system which influences vehicle stability, ride comfort and finally the performance of the car. Designing a good suspension will positively influence the customer perception of the ride comfort and handling of the vehicle. In the present scenario, large electrification drive across the globe in the automotive sector are encouraging the manufacturers to explore the possibility of replacing the engine with the electric motor and battery in a conventional vehicle. Dynamic characteristics of the vehicle may vary due to change in mass distribution and center of gravity of the vehicle, which in turn will have an impact on the suspension characteristics. To avoid the negative impact on the ride and handling, suspension characteristics like pitch, bounce, roll, wheel rate, camber angle, toe in/out need to be reassessed and modified. They are likely to impact suspension geometry and vehicle stability during maneuvers involving oversteer and understeer.
Technical Paper

Aero Drag Improvement Study on Large Commercial Vehicles Using CFD Lead Approach

2021-09-22
2021-26-0424
Nowadays, E- commerce and logistics business model is booming in India with road transport as a major mode of delivery system using containers. As competition in such business are on rise, different ways of improving profit margins are being continuously evolved. One such scenario is to look at reducing transportation cost while reducing fuel consumption. Traditionally, aero dynamics of commercial vehicles have never been in focus during their product development although literature shows major part of total fuel energy is consumed in overcoming aerodynamic drag at and above 60 kmph in case of large commercial vehicle. Hence improving vehicle exterior aerodynamic performance gives opportunity to reduce fuel consumption and thereby business profitability. Also byproduct of this improvement is reduced emissions and meeting regulatory requirements.
Journal Article

Computational Aero-Acoustics Simulation of Automotive Radiator Fan Noise

2015-04-14
2015-01-1657
Flow bench and engine testing can be used to detect flow induced noise, but understanding the fundamental mechanisms of such noise generation is necessary for developing an effective design. This paper describes Computational Aero-Acoustic (CAA) analyses performed to obtain the broad-band and BPF noise sources A computational aero-acoustics simulation on the aerodynamic noise generation of an automotive radiator fan assembly is carried out. Three-dimensional Computational Fluid Dynamics (CFD) simulation of the unsteady flow field was performed including the entire impeller and shroud to obtain the source of an audible broad-band flow noise between 2 to 4 kHz. Static pressure probes placed around the outer-periphery and at the center of the impeller inlet side and, at the shroud cavities to capture the noise sources. The static pressure at all probe locations were FFT (Fast Fourier Transform) processed and sound pressure level (SPL) was calculated.
X