Refine Your Search

Search Results

Journal Article

Unique Regeneration Steps for the Sorbent-Based Atmosphere Revitalization System Designed for CO2 and H2O Removal from Spacecraft Cabins

2009-07-12
2009-01-2532
An SBAR system for H2O and CO2 removal from spacecraft cabin air was studied both experimentally and theoretically. An emphasis was placed on its purgeless, deep vacuum regeneration step. Three evacuation steps were studied: 1) single ended depressurization (SED) through the feed end of the bed; 2) simultaneous dual ended depressurization (DED) through both ends of the bed; and 3) simultaneous triple ended depressurization (TED) through both ends of the bed and a port located at some axial position. TED resulted in a lower average bed pressure at the end of evacuation compared to DED, which, in turn caused more CO2 to be removed. An optimal third port location also existed. The use of TED should allow the SBAR bed size to be reduced.
Journal Article

Model Based Diagnostics of an Aircraft Generator Using AAKR and SPRT

2010-11-02
2010-01-1761
Electrical power generation is an important component in the Electrical Power System of an Aircraft (EPS). In this paper we present a model based diagnostic framework for early generator degradation detection and tracking within an Aircraft Generator. The nominal health state is modeled empirically using an Auto-associative Kernel Regression (AAKR) technique using signals extracted from a healthy generator. Later the health state is estimated by comparing sensor observations with the model predictions. Finally, a Sequential Probability Ratio Test (SPRT) is used to detect and track degradation. This model based framework showed excellent degradation tracking performance when it was tested on a unit that was run to failure.
Journal Article

SoH Recognition of Aviation Batteries Via Passive Diagnostic Device

2010-11-02
2010-01-1762
Aviation battery maintenance is trending toward on-condition maintenance. Nickel-Cadmium (NiCd), Valve Regulated Lead-Acid (VRLA), or prospective Li-ion batteries are used to start engines, provide emergency back-up power, and assure ground power capability for maintenance and pre-flight checkout. As these functions are mission essential, State of Health (SoH) recognition is critical. SoH includes information regarding battery energy, power and residual cycle life. This paper describes an SoH recognition technique for on-board aviation batteries and presents a passive diagnostic device (PDD). The PDD monitors on-board system battery current, voltage and ambient temperature and utilizes no active signals to the battery which can be restricted or even prohibited in order to avoid any interference with the vehicle electrical system.
Journal Article

System Integration of a Safe, High Power, Lithium Ion Main Battery into a Civil Aviation Aircraft

2010-11-02
2010-01-1770
The Cessna Citation CJ4, certified on March 12, 2010, is believed to be the first civil aircraft with a Lithium Ion main battery. The 26.4VDC, 44Ah Lithium Ion main battery weighs 54 lbs, a 35% weight saving over a Nickel-Cadmium battery. Using phosphate-based Lithium Ion cells, which have no positive feedback thermal runaway failure mode, system integration of the battery and aircraft architecture design is simpler. Electronics and software are needed to optimize life only, not to ensure safety. Emergency discharge with failed electronics is enabled with the selection of a less volatile chemistry, the use of an analog Module Management System for cell balancing and protection, and the use of a microcontroller-based digital Central Monitoring System that reports health. System safety failure hazard assessment is considered Major, and the battery software is certified to the requirements of RTCA DO-178B, Design Assurance Level C.
Journal Article

Investigation of Tradeoffs between Efficiency, Mass, Cost, Service Factor, and Power Factor in Induction Machines

2010-11-02
2010-01-1785
The focus of this research is to perform a detailed investigation of the tradeoffs between mass, efficiency, service factor (SF), power factor (PF), and cost of commercially available induction machines (IMs). To support this effort, data from a large number of IMs is used to establish Pareto-optimal fronts between these competing objectives. From the Pareto-optimal fronts, relatively straightforward models are formulated for the mass versus loss, cost versus loss, SF versus mass, PF versus cost. Parameters of the models are obtained using a genetic algorithm (GA).
Journal Article

An Investigation of Metal and Ceramic Thermal Barrier Coatings in a Spark-Ignition Engine

2010-10-25
2010-01-2090
Surface temperature and heat flux were measured in a single cylinder SI engine piston when uncoated and with two different surface coatings: a metal TBC and YSZ. Average heat flux into the piston substrate was 33 % higher with the metal TBC and unchanged with the YSZ relative to the uncoated surface. The increase with the metal TBC was attributed to its surface roughness. However, the metal TBC and YSZ reduced peak heat flux into the substrate surface by 69 % and 77 %, respectively.
Journal Article

Soot Removal from Diesel Engine Lubrication Systems

2010-10-25
2010-01-2101
The removal of soot in the lubricating sumps of diesel engines is a formidable task, further compounded by the introduction of Exhaust Gas Recirculation (EGR). Efficient removal of soot would help ensure engine durability and engine performance while increasing oil drain intervals thus reducing maintenance costs. This paper describes a method by which soot can be separated from the oil with the application of an electric field by utilizing the small electrical charge on the soot particles. The electric field is applied to a network of electrodes that support an open porous network which stabilizes the weakly bound soot cake. Significantly higher filtration efficiency was achieved as compared to mechanical particulate filtration and centrifugation. The paper also discusses the controlling conditions while detailing the performance testing at both a bench scale level and pilot scale level.
Journal Article

Effect of Different B20 Fuels on Laboratory-Aged Engine Oil Properties

2010-10-25
2010-01-2102
Biodiesel-blended fuel is increasingly becoming available for diesel engines. Due to seasonal and economic factors, biodiesel available in filling stations can be sourced from varying feedstocks. Moreover, biodiesel may not contain the minimum oxidative stability required by the time it is used by the automotive consumer. With fuel dilution of engine oil accelerated by post-injection of fuel for regeneration of diesel particulate filters, it is necessary to investigate whether different biodiesel feedstocks or stabilities can affect engine oil properties. In this work, SAE 15W-40 CJ-4 is diluted with B20 fuel, where the B20 was prepared with soy methyl ester (SME) B100 with high Rancimat oxidative stability, SME B100 with low oxidative stability, and lard methyl ester (LME). The oils were then subjected to laboratory aging simulating severe drive cycles. At intermediate aging times, samples were obtained and additional B20 was added to simulate on-going fuel dilution.
Journal Article

Development of a Predictive Model for Gasoline Vehicle Particulate Matter Emissions

2010-10-25
2010-01-2115
The relationship between gasoline properties and vehicle particulate matter emissions was investigated, for the purpose of constructing a predictive model. Various chemical species were individually blended with an indolene base fuel, and the solid particulate number (PN) emissions from each blend were measured over the New European Driving Cycle (NEDC). The results indicated that aromatics with a high boiling point and a high double bond equivalent (DBE) value tended to produce more PN emissions. However, high boiling point components with low DBE values, such as paraffins, displayed only a minor effect on PN. Upon further analysis of the test results, it was also confirmed that low vapor pressure components correlated with high PN emissions, as might be expected based on their combustion behavior. A predictive model, termed the “PM Index,” was constructed based on the weight fraction, vapor pressure, and DBE value of each component in the fuel.
Journal Article

Ethanol Blend Effects On Direct Injection Spark-Ignition Gasoline Vehicle Particulate Matter Emissions

2010-10-25
2010-01-2129
Direct injection spark-ignition (DISI) gasoline engines can offer better fuel economy and higher performance over their port fuel-injected counterparts, and are now appearing increasingly in more U.S. vehicles. Small displacement, turbocharged DISI engines are likely to be used in lieu of large displacement engines, particularly in light-duty trucks and sport utility vehicles, to meet fuel economy standards for 2016. In addition to changes in gasoline engine technology, fuel composition may increase in ethanol content beyond the 10% allowed by current law due to the Renewable Fuels Standard passed as part of the 2007 Energy Independence and Security Act (EISA). In this study, we present the results of an emissions analysis of a U.S.-legal stoichiometric, turbocharged DISI vehicle, operating on ethanol blends, with an emphasis on detailed particulate matter (PM) characterization.
Journal Article

A Framework for Developing an EPS Health Management System

2010-11-02
2010-01-1725
This paper describes a framework for developing an Integrated Electrical Power System (EPS) Health Management System. The framework is based on the perspective that health management, unlike other capabilities, is not a self-contained, stand-alone system, but is rather an integral part of every aircraft subsystem, system, and the entire platform. Ultimately, the objective is to improve the entire maintenance, logistics and fleet operations support processes. This perspective requires a new mindset when applying systems engineering design principles. The paper provides an overview description of the framework, the potential benefits of the approach and some critical design and implementation issues based on current development efforts.
Journal Article

Permeability Measurements of Sintered and Paper Based Friction Materials for Wet Clutches and Brakes

2010-10-25
2010-01-2229
Wet clutches are important components used in the transmission and drive trains of many modern vehicles. The clutches transfer torque via the friction between a number of friction discs and the friction characteristics is therefore of great importance for the overall behavior of the vehicles. The friction characteristics is governed by a number of parameters such as lubricant base oil and additives, type and permeability of the friction material and temperature and surface roughness of the interacting surfaces. The permeability is considered to influence time of engagement and supply the sliding interface with lubricant and additives during engagement. In this work, a permeability measurement method suitable for wet clutch friction materials is thus used to measure the permeability of friction materials of different types; sintered bronze and paper based materials.
Journal Article

Carbonyl Formation during High Efficiency Clean Combustion of FACE Fuels

2010-10-25
2010-01-2212
The low temperature conditions that occur during high efficiency clean combustion (HECC) often lead to the formation of partially oxidized HC species such as aldehydes, ketones and carboxylic acids. Using the diesel fuels specified by the Fuels for Advanced Combustion Engines (FACE) working group, carbonyl species were collected from the exhaust of a light duty diesel engine operating under HECC conditions. High pressure liquid chromatography - mass spectrometry (LC-MS) was used to speciate carbonyls as large as C 9 . A relationship between carbonyl species formed in the exhaust and fuel composition and properties was determined. Data were collected at the optimum fuel efficiency point for a typical road load condition. Results of the carbonyl analysis showed changes in formaldehyde and acetaldehyde formation, formation of higher molecular weight carbonyls and the formation of aromatic carbonyls.
Journal Article

Application of a Tunable-Diode-Laser Absorption Diagnostic for CO Measurements in an Automotive HCCI Engine

2010-10-25
2010-01-2254
An infrared laser absorption technique has been developed to measure in-cylinder concentrations of CO in an optical, automotive HCCI engine. The diagnostic employs a distributed-feedback, tunable diode laser selected to emit light at the R15 line of the first overtone of CO near 2.3 μm. The collimated laser beam makes multiple passes through the cylinder to increase its path length and its sampling volume. High-frequency modulation of the laser output (wavelength modulation spectroscopy) further enhances the signal-to-noise ratio and detection limits of CO. The diagnostic has been tested in the motored and fired engine, exhibiting better than 200-ppm sensitivity for 50-cycle ensemble-average values of CO concentration with 1-ms time resolution. Fired results demonstrate the ability of the diagnostic to quantify CO production during negative valve overlap (NVO) for a range of fueling conditions.
Journal Article

Controlling Lubricant-Derived Phosphorous Deactivation of the Three-Way Catalysts Part 2: Positive Environmental Impact of Novel ZDP Technology

2010-10-25
2010-01-2257
Prior technical work by various OEMs and lubricant formulators has identified lubricant-derived phosphorus as a key element capable of significantly reducing the efficiency of modern emissions control systems of gasoline-powered vehicles ( 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 ). However, measuring the exact magnitude of the detriment is not simple or straightforward exercise due to the many other sources of variation which occur as a vehicle is driven and the catalyst is aged ( 1 ). This paper, the second one in the series of publications, examines quantitative sets of results generated using various vehicle and exhaust catalyst testing methodologies designed to follow the path of lubricant-derived phosphorous transfer from oil sump to exhaust catalytic systems ( 1 ).
Journal Article

Lean Gasoline Engine Reductant Chemistry During Lean NOx Trap Regeneration

2010-10-25
2010-01-2267
Lean NOx Trap (LNT) catalysts can effectively reduce NOx from lean engine exhaust. Significant research for LNTs in diesel engine applications has been performed and has led to commercialization of the technology. For lean gasoline engine applications, advanced direct injection engines have led to a renewed interest in the potential for lean gasoline vehicles and, thereby, a renewed demand for lean NOx control. To understand the gasoline-based reductant chemistry during regeneration, a BMW lean gasoline vehicle has been studied on a chassis dynamometer. Exhaust samples were collected and analyzed for key reductant species such as H₂, CO, NH₃, and hydrocarbons during transient drive cycles. The relation of the reductant species to LNT performance will be discussed. Furthermore, the challenges of NOx storage in the lean gasoline application are reviewed.
Journal Article

Proof-of-Principle Investigation into the Use of Custom Rapid Aging Procedures to Evaluate and Demonstrate Catalyst Durability

2010-10-25
2010-01-2269
The application of accelerated catalyst aging procedures on an engine dynamometer test bed for the purpose of demonstrating catalyst durability is examined. A proof-of-principle approach is followed using catalysts from vehicles certified to U.S. Tier 2 Bin 4 and California SULEV 2 levels. Accelerated durability demonstration methods based upon conventional fuel cut cycles were employed to age catalysts to levels predicted by quantification of thermal catalyst bed severity on the Standard Road Cycle (SRC) relative to the fuel cut aging cycle using the Bench Aging Time (BAT) equation. Emissions deterioration on the accelerated aging cycle is compared to the automobile manufacturers' certification values and to whole vehicle emissions performance results from several different in-use vehicle fleets. The influence of technology on whole vehicle emissions levels and deterioration characteristics is also evaluated.
Journal Article

Connected Vehicle Accelerates Green Driving

2010-10-19
2010-01-2315
After the turn of the century, growing social attention has been paid to environmental concerns, especially the reduction of greenhouse gas emissions and it comes down to a personal daily life concern which will affect the purchasing decision of vehicles in the future. Among all the sources of greenhouse gas emissions, the transportation industry is the primary target of reduction and almost every automotive company pours unprecedented amounts of money to reengineer the vehicle technologies for better fuel efficiency and reduced CO2 emission. Besides those efforts paid for sheer improvements of genuine vehicle technologies, NISSAN testified that “connectivity” with outside servers contributed a lot to reduce fuel consumption, thus the less emission of GHG, with two major factors; 1. detouring the traffic congestions with the support of probe-based real-time traffic information and 2. providing Eco-driving advices for the better driving behavior to prompt the better usage of energy.
Journal Article

Maximizing Net Present Value of a Series PHEV by Optimizing Battery Size and Vehicle Control Parameters

2010-10-19
2010-01-2310
For a series plug-in hybrid electric vehicle (PHEV), it is critical that batteries be sized to maximize vehicle performance variables, such as fuel efficiency, gasoline savings, and zero emission capability. The wide range of design choices and the cost of prototype vehicles calls for a development process to quickly and systematically determine the design characteristics of the battery pack, including its size, and vehicle-level control parameters that maximize the net present value (NPV) of a vehicle during the planning stage. Argonne National Laboratory has developed Autonomie, a modeling and simulation framework. With support from The MathWorks, Argonne has integrated an optimization algorithm and parallel computing tools to enable the aforementioned development process. This paper presents a study that utilized the development process, where the NPV is the present value of all the future expenses and savings associated with the vehicle.
Journal Article

High Shear Rate Rheology of Lower Viscosity Engine Oils Over a Temperature Range of 80° to 150°C Using the Tapered Bearing Simulator (TBS) Viscometer

2010-10-25
2010-01-2288
In 2005, the growing emphasis on fuel efficiency coupled with the long-recognized negative effects of viscous friction caused by engine hydrodynamic lubrication, led to considerations of the benefits of lower viscosity engine oils by the SAE Engine Oil Viscosity Classification (EOVC) Task Force. More recently these considerations were given further impetus by OEM enquiry regarding modification of the SAE Viscosity Classification System to include oils of lower viscosity specification than that of SAE 20. For the EOVC Task Force, such considerations of commercially available, significantly lower viscosity engine oils, also produced a need to reassess the precision of high shear rate viscometry of such engine oils as presently practiced at 150°C - as well as interest in temperatures such as 100° and 120°C believed more representative of engine operating conditions.
X