Refine Your Search

Search Results

Research Report

Unsettled Technology Domains for Rapid and Automated Verification of Industry 4.0 Machine Tools

2020-09-29
EPR2020019
Currently, inaccuracies in machine tools are often not detected until after they have produced nonconforming parts, causing reworking or scrap. For high-value aerospace parts, a single rejected part is a significant cost. Low-value parts are often inspected less frequently, allowing many nonconforming parts to be produced before the issue is detected, also resulting in high cost. The alternative to relying on part inspection is to run frequent tests on the machine itself, but established calibration and health-check processes take between 20 minutes and several days. Emerging rapid and automated verification (RAV) processes enable machine tools to check their performance automatically in just a few minutes. These RAV processes can be performed frequently throughout the day, allowing machines to operate without human intervention for long periods of time. When an issue is detected, the machine may be able to recalibrate and then continue automatically.
Research Report

Unsettled Issues on the Viability and Cost-Effectiveness of Automation in Aerospace Manufacturing

2021-02-15
EPR2021005
The aerospace manufacturing industry is, in many ways, one of the most sophisticated commercial manufacturing systems in existence. It uses cutting-edge materials to build highly complex, safety-critical structures and parts. However, it still relies largely upon human skill and dexterity during assembly. There are increasing efforts to introduce automation, but uptake is still relatively low. Why is this and what needs to be done? Some may point to part size or the need for accuracy. However, as with any complex issue, the problems are multifactorial. There are no right or wrong answers to the automation conundrum and indeed there are many contradictions and unsettled aspects still to be resolved. Unsettled Issues on the Viability and Cost-Effectiveness of Automation in Aerospace Manufacturing builds a comprehensive picture of industry views and attitudes backed by technical analysis to answer some of the most pressing questions facing robotic aerospace manufacturing.
Research Report

The Role of Graphene in Achieving e-Mobility in Aerospace Applications

2022-12-15
EPR2022030
Advanced two-dimensional (2D) materials discovered in the last two decades are now being produced at scale and are contributing to a wide range of performance enhancements in engineering applications. The most well-known of these novel materials is graphene, a nearly transparent nanomaterial comprising a single layer of bonded carbon atoms. In relative terms, it has the highest level of heat and electrical conductivity, protects against ultraviolet rays, and is strongest material ever measured. These properties have made graphene an attractive potential material for a variety of applications, particularly for transportation related uses, and especially for aerospace engineering. The Role of Graphene in Achieving e-Mobility in Aerospace Applications reviews the current state of graphene-related aerospace applications and identifies the technological challenges facing engineers that look to benefit from graphene’s attractive properties.
Research Report

Deployment of Parallel Kinematic Machines in Manufacturing

2022-04-27
EPR2022010
The field of parallel kinematics was viewed as being potentially transformational in manufacturing, having multiple potential advantages over conventional serial machine tools and robots. However, the technology never quite achieved market penetration or broad success envisaged. Yet, many of the inherent advantages still exist in terms of stiffness, force capability, and flexibility when compared to more conventional machine structures. Deployment of Parallel Kinematic Machines in Manufacturing examines why parallel kinematic machines have not lived up to original excitement and market interest and what needs to be done to rekindle that interest. A number of key questions and issues need to be explored to advance the technology further. Click here to access the full SAE EDGETM Research Report portfolio.
Research Report

General Aviation and the Transition to Electrification

2022-08-23
EPR2022015
The general aviation industry is about to be transformed by a rare convergence of technologies, mainly electrification, automation, and autonomy. Small aircraft of the future will be more sustainable, safer to operate, and more capable than today’s piston-engine aircraft. This report describes some of the challenges and opportunities that will arise when the upcoming technology convergence wave finds applications in four- to six-seat aircraft that will enter into service before the end of the 2020s. NOTE: SAE EDGE™ Research Reports are intended to identify and illuminate key issues in emerging, but still unsettled, technologies of interest to the mobility industry. The goal of SAE EDGE™ Research Reports is to stimulate discussion and work in the hope of promoting and speeding resolution of identified issues. These reports are not intended to resolve the challenges they identify or close any topic to further scrutiny.
Research Report

The Right Level of Automation for Industry 4.0

2022-05-16
EPR2022013
In its entirety, automation is part of an integrated, multi-disciplinary product development process including the design, process, production, logistics, and systems approach—it depends on all these areas, but it also influences them as well. Automation in aerospace manufacturing is present throughout the entire supply chain, from elementary part manufacturing at suppliers up to final assembly, and a clear understanding of all the benefits (and drawbacks) of automation would help designers and engineers select the right designs for and levels of automation. The Right Level of Automation Within Industry 4.0 examines all impacts of automation that should be known by designers, manufacturers, and companies before investments in automation-related decisions are made—regardless of the which industry they work in. The process and the set of criteria discussed in this report will help decision makers select the right level of automation.
Research Report

Unsettled Topics in the General Aviation Autonomy Landscape

2022-02-24
EPR2022004
The extent of automation and autonomy used in general aviation (GA) has been accelerating dramatically. This has huge potential benefits for safety given that 75% of accidents in personal and on-demand GA are due to pilot error. However, an approach to certifying autonomous systems that relies on reversionary modes limits their potential to improve safety. Placing a human pilot in a situation where they are suddenly tasked with flying an airplane in a failed situation, often without sufficient situational awareness, is overly demanding. This, coupled with advancing technology that may not align with a deterministic certification paradigm, creates an opportunity for new approaches to certifying autonomous and highly automated aircraft systems.
Research Report

Unsettled Issues Regarding the Use of eVTOL Aircraft during Natural Disasters

2022-01-27
EPR2022001
Recent advancements of electric vertical takeoff and landing (eVTOL) aircraft have generated significant interest within and beyond the traditional aviation industry, and many new and novel applications have been identified and are under development. One promising application is rapid response during natural disasters, which can complement current capabilities to help save lives and enhance post-disaster recoveries. The Use of eVTOL Aircraft During Natural Disasters presents issues that need to be addressed before eVTOL aircraft are integrated into natural disaster response operations: eVTOL vehicle development Detect-and-avoid capabilities in complex and challenging operating environments Autonomous and remote operations Charging system compatibility and availability Operator and controller training Dynamic air space management Vehicle/fleet logistics and support Acceptance from stakeholders and the public Click here to access the full SAE EDGETM Research Report portfolio.
Research Report

Internal Boundaries of Metal Additive Manufacturing: Future Process Selection

2022-03-11
EPR2022006
In the early days, there were significant limitations to the build size of laser powder bed fusion (L-PBF) additive manufacturing (AM) machines. However, machine builders have addressed that drawback by introducing larger L-PBF machines with expansive build volumes. As these machines grow, their size capability approaches that of directed energy deposition (DED) machines. Concurrently, DED machines have gained additional axes of motion which enable increasingly complex part geometries—resulting in near-overlap in capabilities at the large end of the L-PBF build size. Additionally, competing technologies, such as binder jet AM and metal material extrusion, have also increased in capability, albeit with different starting points. As a result, the lines of demarcation between different processes are becoming blurred.
Technical Paper

Managing Value Stream Risk

2006-08-30
2006-01-2389
A typical risk assessment or audit used in industry today will look at a single organizations risk in an isolated business system dimension, such as the management system, product, or process deployed at a specific company. Risk must be found in both material and information flows and quantified in order to enable effective management decisions. Value Stream Risk Assessment™ (VSRA™) is a tool to identify, quantify, prioritize, and intelligently mitigate risk wherever it resides in a the Value Stream. VSRA™ has been developed to compliment Lean and Six Sigma techniques and enhances the quality audit process to provide more value to the organization.
Technical Paper

The HUYGENS Thermal Shield: Design, Development and Qualification Rationale

1995-07-01
951574
The ESA HUYGENS probe is scheduled for launch as part of the CASSINI mission to the Saturnian system in 1997, due to arrive at TITAN in late 2004. The HUYGENS probe shall then perform a 2.5 h exploratory descent in TITAN's atmosphere. This descent phase will be preceded by a 3 mn Entry phase during which the velocity of the European probe will be reduced from 6 km/s down to around 400 m/s. This will be obtained by means of a 2.7 m diameter shield. This paper presents the general rationale used for the shield design, development and qualification.The following steps are described: choice of shield concept and materials verification of compliance of thermal protection materials with shield requirements development of new processes imposed by the mission specificities verification of interface compatibility between thermal protection materials and shield structure qualification of the thermal protection system and of the shield design to the entry mechanical loads and thermal fluxes.
Technical Paper

Numerical Investigation of the NASA High-Lift Airfoil with a Conformal Vortex Generator at Transonic Speed

2023-03-07
2023-01-0979
Numerical investigation of airflow at a transonic speed over the wing of the NASA high-lift Common Research Model (CRM) with and without a conformal vortex generator (CVG), placed on the airfoil suction side has been performed. The objective of the investigation was to assess the impact of CVG on the wing’s lift to drag (L/D) ratio and tip vortices. The wing has aspect and taper ratios of respectively 9, and 0.275, and a leading-edge sweep angle of 37.24 degrees. The root and tip chords were respectively 11.81m and 2.73 m with an approximate mean chord of 6.62 m. The angle of attack was 2.5 degrees. The CVG was distorted V-shaped with a base distance of approximately 4.8 cm, a depth of 8.8 cm, and a tip-to root angle of approximately 30.20. The CVG is on both sides of the tape pointing in opposite directions. The tape is 2 mm thick, 83 cm wide, spanning the entire length of the wing surface.
Technical Paper

Intelligent Decision-Making Policies of Aircraft Assembly Based on Experts Tacit Knowledge

2023-03-07
2023-01-0981
Regarding the development of an aircraft assembly process, this paper will illustrate the intelligent decision and policies of the aircraft assembly process based on technician experience. A model of the knowledge management system of the aircraft assembly process is developed to avoid the complexity of the entire aircraft or aircraft product assembly process. Firstly, According to the characteristics of the knowledge management system of the aircraft assembly process, the aircraft assembly process has been discussed to realize the decision of the aircraft assembly process. Secondly, intelligent decision-making in the aircraft assembly process has been established based on the knowledge management system and aircraft assembly process library that is oriented to the assembly process requirements employing an assembly process reasoning method.
Technical Paper

Knowledge Innovation on Digital Measurement Methods of Aircraft Assembly Combining the Laser Tracker and the Articulated Arm Measuring Machine

2023-03-07
2023-01-0992
The fundamental characteristic of aircraft assembly is assembly measurement accuracy. A single digital measurement device can meet the requirements of an analytical and small surface. But a single digital measurement device cannot meet the measurement requirements for synthetic and large surfaces, such as fuselage panel components. This research aims to establish a combined measurement method to improve the measurement quality and extend the measurement area. The method demonstrated the combined measurement method utilizing a combination of the laser tracker and the articulated arm measuring machine. In this research, the combined measurement system is constructed based on the complexity and large size of the fuselage panel. The articulated arm measuring machine is used to scan the surface of the panel components accurately and the coordinate conversion of the common points measured by the laser tracker to realize the shape of the aircraft fuselage panel.
Technical Paper

System Wide Reliability Impact of Power Converters in More-Electric Aircraft Applications

2023-03-07
2023-01-0991
The continued electrification of aircraft is required such that ambitious decarbonisation targets can be met. A significant challenge presented with this trend is the increased reliance on electrical systems to perform flight-critical operations in a manner that has not been seen in previous generations of aircraft. The power electronic converter is a key enabling technology in aircraft electrification. Its prevalence is such that the failure rate of flight critical-loads is closely linked with that of the associated power electronic converters. As such, there is a clear need to better understand the impact of improvements in both the reliability and failure estimation of novel power electronic converters at a systems level in future aerospace applications. Accordingly, this paper presents key highlights from literature on power converter research, summarising advances in reliability-enhancing features and more accurate Physics-of-Failure modelling methods.
Technical Paper

AI Inspired ATC, Based on ANN and Using NLP

2023-03-07
2023-01-0985
An Air Traffic Controller(ATC) is a person responsible for the proper Take-Off and Landing of an Aircraft from the runway, and for relaying continuous vital information back and forth from Pilots. The proposed ATC will automate this entire process to reduce human-generated errors and save costs. The entire system will be made using Artificial Intelligence and will use Natural Language Processing and Artificial Neural Networks to create a human-like, but a better-prepared system. The model needed to create the ATC, can be trained on already available crucial flight data. The data must include flight take-off and landing time, along with altered time based on weather, climate and other physical factors. The back-end system of the ATC, can be then made to work on this trained model, and produce correct and calculated flight path and timings for the take-off and Landing.
Technical Paper

Designing and Innovating for Circularity: An Engineering Life Cycle Approach for Complex and Certified Products

2023-03-07
2023-01-0988
The concept of the circular economy provides a framework for a more efficient closed-loop economy. Much literature has been published focusing on circular business models and assessing environmental impact throughout the life cycle. A move towards more circular business models, where the focus transitions to the delivery of a capability rather than the delivery of a product, presents new challenges to manufacturers of complex or certified engineered products. The aviation industry has established several engineering disciplines, life cycle design, and certification approaches that (while not designed with the circular economy in mind) underpin the principles of the circular economy. This paper provides a new conceptual framework for the circular economy that integrates the engineering principles that drive circularity around the life cycle for designing, producing, and operating complex and certified engineering systems.
Technical Paper

Capacity Modelling and Measurement for Smart Elastic Manufacturing Systems

2023-03-07
2023-01-0997
Aerospace manufacturing is improving its productivity and growth by expanding its capacity for production by investing in new tools and more equipment to provide additional capacity and flexibility in the face of widespread supply disruptions and unpredictable demand. However, the cost of such measures can result in increased unit costs. Alternatively, productivity and quality can be improved by utilizing available resources better to reach optimal performance and react to emerging disruptions and changes. Elastic Manufacturing is a new paradigm that aims to change the response behavior of firms to meet sudden market demands based on automated analysis of the utilization of the available resources, and autonomous allocation of capacity to use resources in the most efficient manner. Through digitalization of the shopfloor, streaming data from equipment enables companies to identify areas for improvement and boost the efficiency without large capital expenditure.
Technical Paper

Built-In-Test for Fiber Optic Links

2023-03-07
2023-01-1019
This work covers the historical development of Built-In-Test (BIT) for fiber optic interconnect links for aerospace applications using Optical Time Domain Reflectometry (OTDR) equipped transceivers. The original failure modes found that installed fiber optic links must be disconnected before diagnosis could begin, often resulting in “no fault found” (NFF) designation. In fact, the observed root cause was that most (85%) of the fiber optic link defects were produced by contamination of the connector end faces. In March of 2006, a fiber optics workshop was held with roughly sixty experts from system and component manufacturers to discuss the difficulties of fiber optic test in aerospace platforms. During this meeting it was hypothesized that Optical Time Domain Reflectometry (OTDR) was feasible using an optical transceiver transmit pulse as a stimulus. The time delay and amplitude of received reflections would correlate with the position and severity of link defects, respectively.
Technical Paper

Comparative CFD Analysis of Different Angles of Trailing-Edge Fowler Wing Flaps

2023-03-07
2023-01-1023
This paper focuses on a case study to compare the performances of Fowler wing flaps that are used on the trailing edge of modern-day commercial airliners. The aim is to observe trends in coefficients of lift (Cl) and drag (Cd) with varying flap angles of release on a single-slotted Fowler flap and arrive at the most efficient flap configuration for flight. A series of two-dimensional analyses are carried out using computational fluid dynamics (CFD) to examine the flow separation and occurrence of stalls between the different angles of flap deflection. A two-equation, k-ω shear stress transport (SST) turbulence model is used as it helps in better prediction of flow separation and boundary layer studies. Since the study is carried out for such passenger carriers, the study focuses on the lower transonic ranges of Mach number 0.7-0.9 with a Reynolds number range of 400,000 to 500,000 considering a scaled-down model and upon taking inspiration from related literature.
X