Refine Your Search

Search Results

Technical Paper

New Platform for High Quality Satellite TV Reception and Data Connectivity in Moving Vehicles

2006-10-16
2006-21-0036
This paper will describe the commercial drivers and a new technical solution for providing Satellite TV to moving vehicles in a form factor and at a price point that will allow for application to virtually any size vehicle. The paper will further describe a new video delivery service concept (tentatively described as T7 for the purpose of the paper) that will provide a fast to market, low capital expenditure, and fully scalable platform specifically designed for use in mobile vehicle applications.
Technical Paper

The Intelligent Cockpit - Design Meets Digital Information

2006-10-16
2006-21-0035
The future car cockpit features individual personal information, communication and entertainment for the driver and the passenger. The user interface and the functionality are optimized with respect to minimum driver distraction, intuitive and ergonomic use, and appealing design. Navigation and entertainment will be wirelessly connected to internet services. The user will find a functionality, menu logic and graphics similar to consumer electronics and internet applications, adapted to automotive usage. Large displays and a new graphics design style create a unique selling point and will replace the classic instrumentation in dedicated market segments. Speech dialog will become more performing and intuitively, and the remote use of mobile devices becomes seamless and convenient. The infotainment architecture is modular and scaleable, and builds upon standard hardware and software components from the IT industry.
Technical Paper

XM Satellite Radio Technology & Content Evolution

2006-10-16
2006-21-0068
XM Satellite Radio launched its nationwide service in September of 2001. With 6.5 million subscribers at the end of the first quarter of 2006, XM is one of the fastest growing audio formats and entertainment services. This paper addresses XM's technology and content evolution, primarily for the radio unit and the signaling protocols, from the early years to the present time, and the applicability of this technology in fostering exciting new infotainment services. The radio architecture includes an antenna, an RF tuner module, a baseband chipset and a microprocessor. All of these subsystems underwent a complete transformation in the past four years from a size perspective, capability and cost. Specifically the following phases of the radio platform are addressed: a) Phase 1: The early years; b) Phase 2: The invention of the Plug and Play ; c) Phase 3: Connect and Play ; d) Phase 4; The wearable; e) Phase 5: Infotainment convergence of audio plus data services.
Technical Paper

Strawberry Cultivar Analysis: Temperature and Pollination Studies

2006-07-17
2006-01-2030
Strawberry is a life-support-system candidate crop species that is long-lived, asexually propagated, and can bear large quantities of fruit high in sugar and antioxidant content. Strawberries of four day-neutral cultivars (‘Tribute’, ‘Tristar’, ‘Seascape’, and ‘Fern’) and one ever-bearing cultivar (‘Cavendish’) were grown under greenhouse conditions or varying temperature regimes in three growth chambers. Flowers in growth chambers were hand pollinated three-times weekly with stored pollen, and ripe berries were harvested, counted, weighed, and tested organolepticly. In the greenhouse, two different pollination treatments were compared, while another group of plants was left unpollinated, receiving only occasional mechanical stimulation from normal greenhouse airflow, berry harvest, and plant maintenance. A second group was pollinated with a vibrating wand, and a third group was hand pollinated with stored pollen.
Technical Paper

Climb Performance Analysis Using a GPS Reference Method

2004-04-20
2004-01-1806
Certification of climb performance has traditionally been accomplished using reciprocal heading climbs. This was done to eliminate wind gradient effects. However, the FAA allows climb certification to be done on a single heading when inertial methods are used. A method was developed utilizing a DGPS system that allows an engineer to apply the inertial corrections to a single climb without the need of INS equipment. This method has been validated on several aircraft by comparing conventional reciprocal heading climb results to results obtained using the GPS method on the same climbs. The GPS climb method presented here can potentially reduce the number of climbs required for development and certification as well as provide more consistent data.
Journal Article

Assembly 4.0 - Flexibly Picked Up, Precisely Mounted

2019-03-19
2019-01-1355
Component deviations between as-designed and as-built as a result of deformations in the production process lead to significant cost increasing during assembly. After quality inspection, components are provisionally preassembled to determine their matching accuracy. Components with an acceptable tolerance range are then assembled. Otherwise costly reworks are required. Subsequently, the preassembly process is repeated until acceptable assembly tolerances are achieved. To avoid this time-consuming and costly process loop, a flexible mounting frame coupled with a real-time measuring system is used to optimize the assembly process. The flexible mounting frame can be applied for many applications where components are to be aligned and mounted. This flexible mounting frame allows the realization of exact shape and acceptable position tolerances. The mounting frame consists of telescopic carbon fiber reinforced polymer (CFRP) tubes, linear actuators and suctions grippers.
Journal Article

Weapon Combat Effectiveness Analytics Using Big Data and Simulations: A Literature Review

2019-03-19
2019-01-1365
The Weapon Combat Effectiveness (WCE) analytics is very expensive, time-consuming, and dangerous in the real world because we have to create data from the real operations with a lot of people and weapons in the actual environment. The Modeling and Simulation (M&S) of many techniques are used for overcoming these limitations. Although the era of big data has emerged and achieved a great deal of success in a variety of fields, most of WCE research using the Defense Modeling and Simulation (DM&S) techniques studied have considered a lot of assumptions and limited scenarios without the help of big data technologies. Furthermore, WCE analytics using previous methodologies cannot help but get the bias results. This paper reviews and combines the basic knowledge for the new WCE analytics methodology using big data and M&S to overcome these problems of bias. Then this paper reviews the general overview of WCE, DM&S, and big data.
Journal Article

A Process for Delivering Extreme AFP Head Reliability

2019-03-19
2019-01-1349
Every now and then a good idea happens. The Modular head was a great idea and enabled the use of multiple types of AFP heads, ATL, ply cutting, part probing, etc. with the use of a single machine and machining cell. At the time the modular head was developed by Electroimpact circa 2004, the industry assumed (and accepted) that AFP was an unreliable process. It still isn’t as reliable as we’d like. One way of coping with this lack of reliability is to stage more than one head in the AFP cell so that a spare head of the exact same type is ready to jump into action if the head out on the floor has an issue. If the reliability of the AFP process were to increase 10x or 50x, would there still be a business case for the multiple AFP head system? The modular head may still win the day, but the metrics change. For instance, if there was only 20 minutes of down time for every head load, it may no longer be advantageous to have 2 heads of the exact same type in the cell.
Journal Article

Prediction of Weather Impacts on Airport Arrival Meter Fix Capacity

2019-03-19
2019-01-1350
This paper introduces a data driven model for predicting airport arrival capacity with 2-8 hour look-ahead forecast data. The model is suitable for air traffic flow management by explicitly investigating the impact of convective weather on airport arrival meter fix throughput. Estimation of the arrival airport capacity under arrival meter fix flow constraints due to severe weather is an important part of Air Traffic Management (ATM). Airport arrival capacity can be reduced if one or more airport arrival meter fixes are partially or completely blocked by convective weather. When the predicted airport arrival demands exceed the predicted available airport’s arrival capacity for a sustained period, Ground Delay Program (GDP) operations will be triggered by ATM system.
Journal Article

System Integration in Aircraft Environment - Hydraulic Performances through Coupled Simulations

2020-03-10
2020-01-0004
An Airbus methodology for the assessment of accurate hydraulic performance at early program stages in the complete aircraft and power consuming systems environment based on joint collaboration with Chiastek is presented. The aim is to comfort the prediction of an aircraft hydraulic performance in order to limit the need for a physical integration test bench and extensive flight test campaign but also to avoid late system redesign based on robust early stage model based engineering and to secure the aircraft entry-into-service.
Journal Article

Adaptive Test Feedback Loop: A Modeling Approach for Checking Side Effects during Test Execution in Advised Explorative Testing

2020-03-10
2020-01-0017
The main objective of testing is to evaluate the functionality, reliability, and operational safety of products. However, this objective makes testing a complex and expensive stage in the development process. From the perspective of an aircraft OEM, test cases are used to verify integration, system, and application levels. Therefore, test cases certify the products against the requirements using the black box testing approach. In doing so, a test plan defines a sequence of test cases whereby it sets up the environment, stimulates the fault, and then observes the system under test (SUT) for each case. Subsequently, the postprocessing of the test execution classifies the test plan as passed or failed. The ongoing digitization and interconnectedness between aircraft systems increase the complexity in functional testing. This trend leads to a high number of test cases and a multitude of reasons why a specific test-case fails.
Journal Article

Effects of Helical Carbon Nanotubes on Mechanical Performance of Laminated Composites and Bonded Joints

2020-03-10
2020-01-0029
Most composite assemblies and structures generally fail due to weak interlaminar properties and poor performance of their bonded joints that are assembled together with an adhesive layer. Adhesive failure and cohesive failure are among the most commonly observed failure modes in composite bonded joint assemblies. These failure modes occur due to the lack of reinforcement within the adhesive layer in transverse direction. In addition, the laminated composites fail due to the same reason that is the lack of reinforcement through the thickness direction between the laminae. The overall performance of any composite structures and assemblies largely depends on the interlaminar properties and the performance of its bonded joints. Various techniques and processes were developed in recent years to improve mechanical performance of the composite structures and assemblies, one of which includes the use of nanoscale reinforcements in between the laminae and within the adhesive layer.
Journal Article

In-Process Hole and Fastener Inspection Using a High-Accuracy Laser Sensor

2020-03-10
2020-01-0015
Electroimpact has produced a new in-process inspection system for use on drilling and fastening systems. The system uses a high-accuracy, non-contact, laser system to measure the flushness of installed fasteners. The system is also capable of measuring part normality and providing feedback to the machine for correction. One drawback to many automatic inspection systems is measurement error. Many sources of measurement error exist in a production environment, including drilling chips, lubrication, and fastener head markings. Electroimpact’s latest system can create a visualization of the measured fastener for the operator to interpret. This allows the operator to determine the cause of a failed measurement, thus reducing machine downtime due to false negatives. Electroimpact created a custom C# WPF application that queries the point-cloud data and analyzes the raw data. A custom “circle Hough transform” scoring algorithm is used to find the center of the nosepiece (pressure foot).
Journal Article

Los Alamos High-Energy Neutron Testing Handbook

2020-03-10
2020-01-0054
The purpose of the Los Alamos High-Energy Neutron Testing Handbook is to provide user information and guidelines for testing Integrated Circuits (IC) and electronic systems at the Irradiation of Chips and Electronics (ICE) Houses at the Los Alamos Neutron Science Center (LANSCE) at Los Alamos National Laboratory (LANL). Microelectronic technology is constantly advancing to higher density, faster devices and lower voltages. These factors may increase device susceptibility to radiation effects. The high-energy neutron source at LANSCE/LANL provides the capability for accelerated neutron testing of semiconductor devices and electronic systems and to simulate effects in various neutron environments.
Journal Article

Optimal Sizing and Control of Battery Energy Storage Systems for Hybrid Turboelectric Aircraft

2020-03-10
2020-01-0050
Hybrid-electric gas turbine generators are considered a promising technology for more efficient and sustainable air transportation. The Ohio State University is leading the NASA University Leadership Initiative (ULI) Electric Propulsion: Challenges and Opportunities, focused on the design and demonstration of advanced components and systems to enable high-efficiency hybrid turboelectric powertrains in regional aircraft to be deployed in 2030. Within this large effort, the team is optimizing the design of the battery energy storage system (ESS) and, concurrently, developing a supervisory energy management strategy for the hybrid system to reduce fuel burn while mitigating the impact on the ESS life. In this paper, an energy-based model was developed to predict the performance of a battery-hybrid turboelectric distributed-propulsion (BHTeDP) regional jet.
Journal Article

Advancements of Superplastic Forming and Diffusion Bonding of Titanium Alloys for Heat Critical Aerospace Applications

2020-03-10
2020-01-0033
Titanium’s high strength-to-weight ratio and corrosion resistance makes it ideal for many aerospace applications, especially in heat critical zones. Superplastic Forming (SPF) can be used to form titanium into near-net, complex shapes without springback. The process uses a machined die where inert gas is applied uniformly to the metal sheet, forming the part into the die cavity. Standard titanium alpha-beta alloys, such as 6Al-4V, form at temperatures between 900 and 925°C (1650-1700°F). Recent efforts have demonstrated alloys that form at lower temperatures ranging between 760 and 790°C (1400-1450°F). Lowering the forming temperature reduces the amount of alpha case that forms on the part, which must be removed. This provides an opportunity of starting with a lower gauge material. Lower forming temperatures also limit the amount of oxidation and wear on the tool and increase the life of certain press components, such as heaters and platens.
Journal Article

AFP Processing of Dry Fiber Carbon Materials (DFP) for Improved Rates and Reliability

2020-03-10
2020-01-0030
Automated fiber placement of pre-impregnated (pre-preg), thermoset carbon materials has been industrialized for decades whereas dry-fiber carbon materials have only been produced at relatively low rates or volumes for large aerospace structures. This paper explores the differences found when processing dry-fiber, thermoset, carbon materials (DFP) as compared to processing pre-preg, thermoset materials with Automated Fiber Placement (AFP) equipment at high rates. Changes to the equipment are required when converting from pre-preg to dry fiber material processing. Specifically, the heating systems, head controls, and tow tension control all must be enhanced when transitioning to DFP processes. Although these new enhancements also require changes in safety measures, the changes are relatively small for high performance systems. Processing dry fiber material requires a higher level of heating, tension control and added safety measures.
Journal Article

Cable Impedance Calculations Employed in Designing Aerospace Electrical Power Systems

2020-03-10
2020-01-0037
This paper presents design considerations in utilizing cable impedance calculations in the design of an aerospace electrical power system (EPS). Past wiring design guidelines featured a tabular set of data based on a single-point design reference. This results in a cable selection which adds unnecessary weight and under-utilized the wire’s performance ability when considering a vehicle’s design requirements. Present wiring design guidelines have lagged behind the growing movement to achieve an optimized wire selection. Understanding the shortfalls with past and present wiring design methods will improve future methods to comply with increasingly restrictive vehicle performance requirements. This paper will discuss two of the most important design requirements for future aerospace electrical power and distribution feeders, which are weight and thermal limits assigned to an EPS design.
Journal Article

Validation Testing of Lithium Battery Performance-Based Packaging for Use in Air Transportation (SAE G-27)

2020-03-10
2020-01-0042
The SAE G-27 committee was tasked by ICAO to develop a performance-based packaging standard for lithium batteries transported as cargo on aircraft. The standard details test criteria to qualify packages of lithium batteries & cells for transportation as cargo on-board passenger aircraft. Lithium batteries and cells have been prohibited from shipment as cargo on passenger aircraft since 2016. This paper summarizes the results of the tests conducted by Transport Canada and National Research Council Canada to support the development of this standard with evidence-based recommendations. It includes a description of the test specimens, the test set up, instrumentation used, and test procedures following the standard as drafted to date. The study considered several lithium-ion battery and cell chemistries that were tested under various proposed testing scenarios in the draft standard.
Journal Article

Advances in Drilling with PCD (Polycrystalline Diamond)

2020-03-10
2020-01-0035
PCD properties were optimized to drill stacks of CFRP/Ti using an accelerated wear test milling gray cast iron. The optimized PCD was then used to prepare PCD drills. Tests were made to determine the best drilling conditions for the optimized PCD. The results yielded a significant improvement in cycle times as compared to earlier studies using PCD drills. Notched PCD cutting edges were found to eliminate oversizing of the CFRP near the interface of the two materials.
X