Refine Your Search

Search Results

Journal Article

Analysis of Ride Vibration Environment of Soil Compactors

2010-10-05
2010-01-2022
The ride dynamics of typical North-American soil compactors were investigated via analytical and experimental methods. A 12-degrees-of-freedom in-plane ride dynamic model of a single-drum compactor was formulated through integrations of the models of various components such as driver seat, cabin, roller drum and drum isolators, chassis and the tires. The analytical model was formulated for the transit mode of operation at a constant forward speed on undeformable surfaces with the roller vibrator off. Field measurements were conducted to characterize the ride vibration environments during the transit mode of operation. The measured data revealed significant magnitudes of whole-body vibration of the operator-station along the vertical, lateral, pitch and roll-axes. The model results revealed reasonably good agreements with ranges of the measured vibration data.
Journal Article

Mitigating Heavy Truck Rear-End Crashes with the use of Rear-Lighting Countermeasures

2010-10-05
2010-01-2023
In 2006, there were approximately 23,500 rear-end crashes involving heavy trucks (i.e., gross vehicle weight greater than 4,536 kg). The Enhanced Rear Signaling (ERS) for Heavy Trucks project was developed by the Federal Motor Carrier Safety Administration (FMCSA) to investigate methods to reduce or mitigate those crashes where a heavy truck has been struck from behind by another vehicle. Visual warnings have been shown to be effective, assuming the following driver is looking directly at the warning display or has his/her eyes drawn to it. A visual warning can be placed where it is needed and it can be designed so that its meaning is nearly unambiguous. FMCSA contracted with the Virginia Tech Transportation Institute (VTTI) to investigate potential benefit of additional rear warning-light configurations as rear-end crash countermeasures for heavy trucks.
Journal Article

Characterization of Palm Fiber for Development of Biocomposites Material for Automotive Industries

2010-10-05
2010-01-2029
The physical and optical properties viz., water absorption pattern, density, color and opacity of oil palm fiber-LLDPE composites were studied. The effect of fiber size, fiber loading and fiber treatment on the above parameters was also studied. Alkali treatment on fibers was done to reduce the hydrophilic nature of composites. It was found that the water absorption in most of the combinations followed typical fickian behavior. The rate of water absorption and swelling increased with fiber loading. However alkali treatment on fibers resulted in reduction of water absorption at higher fiber loading only and composites with higher fiber size exhibited higher water absorption. True density of oil palm fiber-LLDPE composites were in the range of 967-1177 kg m-₃, whereas the bulk density ranged from 942-1122 kg m-₃. The dielectric constant of the composite was in the range of 3.22 to 6.73.
Journal Article

Oil Palm Fiber Biocomposite for Automotive Industries

2010-10-05
2010-01-2030
The properties of oil palm fiber were estimated and compared with oil seed flax and industrial hemp fibers. Biocomposite of oil palm fiber and linear low density polyethylene (LLDPE) was manufactured. The effect of fiber size, fiber content and fiber treatment on dimensional stability of the biocomposite was studied. The true density of oil palm fiber is found to be 1503 kg m-₃. The oil palm fibers obtained from field contained nearly one-fourth impurities, and the equilibrium moisture contents (EMC) values of fibers nearly doubled with 25% increase in relative humidity. The dielectric constant of oil palm fiber was in the range of 7.76-8.31. The oil palm fiber resulted in thermograms with two endothermic peaks and three exothermic peaks with the first degradation temperature at 301.71°C. Alkali treatment reduced first degradation temperature to 297.1°C.
Journal Article

An Investigation of Metal and Ceramic Thermal Barrier Coatings in a Spark-Ignition Engine

2010-10-25
2010-01-2090
Surface temperature and heat flux were measured in a single cylinder SI engine piston when uncoated and with two different surface coatings: a metal TBC and YSZ. Average heat flux into the piston substrate was 33 % higher with the metal TBC and unchanged with the YSZ relative to the uncoated surface. The increase with the metal TBC was attributed to its surface roughness. However, the metal TBC and YSZ reduced peak heat flux into the substrate surface by 69 % and 77 %, respectively.
Journal Article

Soot Removal from Diesel Engine Lubrication Systems

2010-10-25
2010-01-2101
The removal of soot in the lubricating sumps of diesel engines is a formidable task, further compounded by the introduction of Exhaust Gas Recirculation (EGR). Efficient removal of soot would help ensure engine durability and engine performance while increasing oil drain intervals thus reducing maintenance costs. This paper describes a method by which soot can be separated from the oil with the application of an electric field by utilizing the small electrical charge on the soot particles. The electric field is applied to a network of electrodes that support an open porous network which stabilizes the weakly bound soot cake. Significantly higher filtration efficiency was achieved as compared to mechanical particulate filtration and centrifugation. The paper also discusses the controlling conditions while detailing the performance testing at both a bench scale level and pilot scale level.
Journal Article

Towards a Model for Engine Oil Hydrocarbon Particulate Matter

2010-10-25
2010-01-2098
The drive to reduce particle emissions from heavy-duty diesel engines has reached the stage where the contribution from the lubricant can have a major impact on the total amount of particulate matter (PM). This paper proposes a model to predict the survival rate (unburnt oil divided by oil consumption) of the hydrocarbons from the lubricant consumed in the cylinder. The input data are oil consumption and cylinder temperature versus crank angle. The proposed model was tuned to correlate well with data from a six-cylinder heavy-duty diesel engine that meets the Euro 5 legislation without exhaust gas aftertreatment. The measured (and modelled) oil survival shows a strong correlation with engine power. The maximum oil survival rate measured (19%) was at motoring conditions at high speed. For this engine, loads above 100 kW yielded an oil survival rate of nearly zero.
Journal Article

Effect of Different B20 Fuels on Laboratory-Aged Engine Oil Properties

2010-10-25
2010-01-2102
Biodiesel-blended fuel is increasingly becoming available for diesel engines. Due to seasonal and economic factors, biodiesel available in filling stations can be sourced from varying feedstocks. Moreover, biodiesel may not contain the minimum oxidative stability required by the time it is used by the automotive consumer. With fuel dilution of engine oil accelerated by post-injection of fuel for regeneration of diesel particulate filters, it is necessary to investigate whether different biodiesel feedstocks or stabilities can affect engine oil properties. In this work, SAE 15W-40 CJ-4 is diluted with B20 fuel, where the B20 was prepared with soy methyl ester (SME) B100 with high Rancimat oxidative stability, SME B100 with low oxidative stability, and lard methyl ester (LME). The oils were then subjected to laboratory aging simulating severe drive cycles. At intermediate aging times, samples were obtained and additional B20 was added to simulate on-going fuel dilution.
Journal Article

Comparison of Diesel Spray Combustion in Different High-Temperature, High-Pressure Facilities

2010-10-25
2010-01-2106
Diesel spray experimentation at controlled high-temperature and high-pressure conditions is intended to provide a more fundamental understanding of diesel combustion than can be achieved in engine experiments. This level of understanding is needed to develop the high-fidelity multi-scale CFD models that will be used to optimize future engine designs. Several spray chamber facilities capable of high-temperature, high-pressure conditions typical of engine combustion have been developed, but because of the uniqueness of each facility, there are uncertainties about their operation. For this paper, we describe results from comparative studies using constant-volume vessels at Sandia National Laboratories and IFP.
Journal Article

Analysis of EGR Effects on the Soot Distribution in a Heavy Duty Diesel Engine using Time-Resolved Laser Induced Incandescence

2010-10-25
2010-01-2104
The soot distribution as function of ambient O₂ mole fraction in a heavy-duty diesel engine was investigated at low load (6 bar IMEP) with laser-induced incandescence (LII) and natural luminosity. A Multi-YAG laser system was utilized to create time-resolved LII using 8 laser pulses with a spacing of one CAD with detection on an 8-chip framing camera. It is well known that the engine-out smoke level increases with decreasing oxygen fraction up to a certain level where it starts to decrease again. For the studied case the peak occurred at an O₂ fraction of 11.4%. When the oxygen fraction was decreased successively from 21% to 9%, the initial soot formation moved downstream in the jet. At the lower oxygen fractions, below 12%, no soot was formed until after the wall interaction. At oxygen fractions below 11% the first evidence of soot is in the recirculation zone between two adjacent jets.
Journal Article

Deterioration of B20 from Compression Ignition Engine Operation

2010-10-25
2010-01-2120
Biodiesel has been widely accepted as an alternative for fossil-derived diesel fuel for use in compression ignition (CI) engines. Poor oxidative stability and cold flow properties restrict the use of biodiesel beyond current B20 blend levels (20% biodiesel in 80% ULSD) for vehicle applications. Maintaining the properties of B20 as specified by ASTM D7476-08 is important because, once out of spec, B20 may cause injector coke formation, fuel filter plugging, increased exhaust emissions, and overall loss of engine performance. While the properties of fresh B20 may be within the specifications, under engine operating and longer storage conditions B20 could deteriorate. In a diesel engine, the fuel that goes to the injector and does not enter the cylinder is recycled back to the fuel tank. The re-circulated fuel returns to the fuel tank at an elevate temperature, which can cause thermal oxidation.
Journal Article

Tailoring Ethanol High Temperature Ignition by Means of Chemical Additives and Water Content

2010-10-25
2010-01-2113
The quest for sustainable alternatives to fossil fuels leads to a growing diversification of the molecular structures of fuel sources. Since ignition is a vital property in the choice of an engine combustion concept, the ability to tailor the ignition behavior of various fuel sources by means of fuel additives is expected to aid the development of fuel-flexible engines. Ethanol is one of the biofuels with a potential to play an important role in the transportation fuel mix of the future. One of the final processes during ethanol production involves distillation in order to minimize the water content. Using wet ethanol in combustion engines could lead to a reduction in the energy consumption during fuel processing. An understanding of fundamental combustion properties of ethanol in the presence of water vapor such as ignition behavior is expected to aid in the design of efficient engine combustion processes.
Journal Article

Development of a Predictive Model for Gasoline Vehicle Particulate Matter Emissions

2010-10-25
2010-01-2115
The relationship between gasoline properties and vehicle particulate matter emissions was investigated, for the purpose of constructing a predictive model. Various chemical species were individually blended with an indolene base fuel, and the solid particulate number (PN) emissions from each blend were measured over the New European Driving Cycle (NEDC). The results indicated that aromatics with a high boiling point and a high double bond equivalent (DBE) value tended to produce more PN emissions. However, high boiling point components with low DBE values, such as paraffins, displayed only a minor effect on PN. Upon further analysis of the test results, it was also confirmed that low vapor pressure components correlated with high PN emissions, as might be expected based on their combustion behavior. A predictive model, termed the “PM Index,” was constructed based on the weight fraction, vapor pressure, and DBE value of each component in the fuel.
Journal Article

Properties of Butanol-Biodiesel-ULSD Ternary Mixtures

2010-10-25
2010-01-2133
The use of butanol as an alternative biofuel blend component for conventional diesel fuel has been under extensive investigation. However, some fuel properties such as cetane number and lubricity fall below the accepted values as described by the ASTM D 975 diesel specifications. Blending 10% butanol with #2 ULSD decreases the cetane number by 7% (from 41.6 to 39.0). At higher butanol blend levels, i.e., 20% v/v, the cetane number decrease cannot be compensated for; even with the addition of a 2000 ppm level commercial cetane improver. The decreased cetane number, or in other words, increased ignition delay, can be attributed to the increased blend level of low cetane butanol as well as the critical physical properties for better atomization of fuels during auto ignition such as viscosity. The kinematic viscosity dropped sharply with increasing butanol blend level up to 25 % v/v, then increased with further increase of butanol blend level.
Journal Article

The Effect of HCHO Addition on Combustion in an Optically Accessible Diesel Engine Fueled with JP-8

2010-10-25
2010-01-2136
Under the borderline autoignition conditions experienced during cold-starting of diesel engines, the amount and composition of residual gases may play a deterministic role. Among the intermediate species produced by misfiring and partially firing cycles, formaldehyde (HCHO) is produced in significant enough amounts and is sufficiently stable to persist through the exhaust and intake strokes to kinetically affect autoignition of the following engine cycle. In this work, the effect of HCHO addition at various phases of autoignition of n-heptane-air mixtures is kinetically modeled. Results show that HCHO has a retarding effect on the earliest low-temperature heat release (LTHR) phase, largely by competition for hydroxyl (OH) radicals which inhibits fuel decomposition. Conversely, post-LTHR, the presence of HCHO accelerates the occurrence of high-temperature ignition.
Journal Article

Effects of Secondary Air Injection During Cold Start of SI Engines

2010-10-25
2010-01-2124
An experimental study was performed to develop a more fundamental understanding of the effects of secondary air injection (SAI) on exhaust gas emissions and catalyst light-off characteristics during cold start of a modern SI engine. The effects of engine operating parameters and various secondary air injection strategies such as spark retardation, fuel enrichment, secondary air injection location and air flow rate were investigated to understand the mixing, heat loss, and thermal and catalytic oxidation processes associated with SAI. Time-resolved HC, CO and CO₂ concentrations were tracked from the cylinder exit to the catalytic converter outlet and converted to time-resolved mass emissions by applying an instantaneous exhaust mass flow rate model. A phenomenological model of exhaust heat transfer combined with the gas composition analysis was also developed to define the thermal and chemical energy state of the exhaust gas with SAI.
Journal Article

Ethanol Blend Effects On Direct Injection Spark-Ignition Gasoline Vehicle Particulate Matter Emissions

2010-10-25
2010-01-2129
Direct injection spark-ignition (DISI) gasoline engines can offer better fuel economy and higher performance over their port fuel-injected counterparts, and are now appearing increasingly in more U.S. vehicles. Small displacement, turbocharged DISI engines are likely to be used in lieu of large displacement engines, particularly in light-duty trucks and sport utility vehicles, to meet fuel economy standards for 2016. In addition to changes in gasoline engine technology, fuel composition may increase in ethanol content beyond the 10% allowed by current law due to the Renewable Fuels Standard passed as part of the 2007 Energy Independence and Security Act (EISA). In this study, we present the results of an emissions analysis of a U.S.-legal stoichiometric, turbocharged DISI vehicle, operating on ethanol blends, with an emphasis on detailed particulate matter (PM) characterization.
Journal Article

A New Functional Global Auto-ignition Model for Hydrocarbon Fuels - Part 1 of 2: An Investigation of Fuel Auto-Ignition Behaviour and Existing Global Models

2010-10-25
2010-01-2161
Homogeneous Charge Compression Ignition (HCCI) engine technology has been an area of rapidly increasing research interest for the past 15 years and appears poised for commercialisation through the efforts of international research institutions and manufacturers alike. In spite of significant worldwide research efforts on numerous aspects of this technology, the need still exists for accurate and computationally efficient fuel auto-ignition models capable of predicting the heat release dynamics of two-stage auto-ignition, especially for full boiling range fuels, sensitive to the effects of pressure, temperature, fuel equivalence ratio and inert dilution.
Journal Article

Simulation of Mild Surge in a Turbocharger Compression System

2010-10-25
2010-01-2142
The behavior of the compression system in turbochargers is studied with a one-dimensional engine simulation code. The system consists of an upstream compressor duct open to ambient, a centrifugal compressor, a downstream compressor duct, a plenum, and a throttle valve exhausting to ambient. The compression system is designed such that surge is the low mass flow rate instability mode, as opposed to stall. The compressor performance is represented through an extrapolated steady-state map. Instead of incorporating a turbine into the model, a drive torque is applied to the turbocharger shaft for simplification. Unsteady compression system mild surge physics is then examined computationally by reducing the throttle valve diameter from a stable operating point. Such an increasing resistance decreases the mass flow rate through the compression system and promotes surge.
Journal Article

High Efficiency, Low Emissions RCCI Combustion by Use of a Fuel Additive

2010-10-25
2010-01-2167
Heavy-duty engine experiments were conducted to explore reactivity controlled compression ignition (RCCI) combustion through addition of the cetane improver di-tert-butyl peroxide (DTBP) to pump gasoline. Unlike previous diesel/gasoline dual-fuel operation of RCCI combustion, the present study investigates the feasibility of using a single fuel stock (gasoline) as the basis for both high reactivity and low reactivity fuels. The strategy consisted of port fuel injection of gasoline and direct injection of the same gasoline doped with a small volume percent addition of DTBP. With 1.75% DTBP by volume added to only the direct-injected fuel (which accounts for approximately 0.2% of the total fueling) it was found that the additized gasoline behaved similarly to diesel fuel, allowing for efficient RCCI combustion. The single fuel results with DTBP were compared to previous high-thermal efficiency, low-emissions results with port injection of gasoline and direct injections of diesel.
X