Refine Your Search

Search Results

Technical Paper

Experimental Investigation of Cyclic Variability on Combustion and Emissions of a High-Speed SI Engine

2015-04-14
2015-01-0742
Cyclic combustion variability (CCV) is an undesirable characteristic of spark ignition (SI) engines, and originates from variations in gas motion and turbulence, as well as from differences in mixture composition and homogeneity in each cycle. In this work, the cycle to cycle variability on combustion and emissions is experimentally investigated on a high-speed, port fuel injected, spark ignition engine. Fast response analyzers were placed at the exhaust manifold, directly downstream of the exhaust valve of one cylinder, for the determination of the cycle-resolved carbon monoxide (CO) and nitric oxide (NO) emissions. A piezoelectric transducer, integrated in the spark-plug, was also used for cylinder pressure measurement. The impact of engine operating parameters, namely engine speed, load, equivalence ratio and ignition timing on combustion and emissions variability, was evaluated.
Technical Paper

Direct Measurement and Chemical Speciation of Top Ring Zone Liquid During Engine Operation

2015-04-14
2015-01-0741
The present manuscript consists of proof of concept experiments involving direct measurements and detailed chemical speciation from the top ring zone of a running engine. The work uses a naturally aspirated single cylinder utility engine that has been modified to allow direct liquid sample acquisition from behind the top ring. Samples were analyzed and speciated using gas chromatographic techniques. Results show that the liquid mixture in the top ring zone is neither neat lubricant nor fuel but a combination of the two with unique chemical properties. At the tested steady state no-load operating condition, the chemical species of the top ring zone liquid were found to be highly dependent on boiling point, where both low reactivity higher boiling point fuel species and lubricant are observed to be the dominant constituents.
Technical Paper

Modeling of Long Fiber Reinforced Plastics

2015-04-14
2015-01-0698
Long fiber reinforced plastics (LFRP) have exhibited superior mechanical performance and outstanding design flexibility, bringing them with increasing popularity in the automotive structural design. Due to the injection molding process, the distribution of long fibers varies at different locations throughout the part, resulting in anisotropic and non-uniform mechanical properties of the final LFRP parts. Images from X-ray CT scan of the materials show that local volume fraction of the long fibers tends to be higher at core than at skin layer. Also fibers are bundled and tangled to form clusters. Most of the current micromechanical material models used for LFRP are extended from those for short fibers without adequate validation. The effect of the complexity of long fibers on the material properties is not appropriately considered. Thus, modeling of these materials is lagging behind the material manufacturing and design development, which in turn limits their further development.
Technical Paper

Predictive Simulations of Damage Propagation in Laminated Composite Materials and Structures with LMS Samtech Samcef

2015-04-14
2015-01-0697
In this paper, the advanced damage analysis of composite materials and structures made of continuous fibers embedded in a polymer matrix is addressed. The solution is based on the LMS Samtech Samcef finite element code, from Siemens PLM Software, which is now available in the Siemens NX CAE environment, with the specific focus of solving non-linear analysis problems for composites. Globally speaking, LMS Samtech Samcef is an implicit non-linear solver able to solve quasi-static and dynamic problems, with a comprehensive library of structural elements and kinematic joints. First, the sizing strategy based on the building block approach (pyramid of physical and virtual tests) is recalled. Applied for years in the aerospace industry, it is here extended to the automotive context. In this approach, the knowledge on the composite material and structure is built step by step from the coupon level up to the final full scale structure.
Technical Paper

Quantification of Interface Thermal Resistance and Prediction of Thermal Conductivity by Observation of Stereoscopic Filler Dispersion in Polymer Composites

2015-04-14
2015-01-0695
In electronic products, the recently increasing thermal radiation demands higher thermal conductivity of polymer composites. However, inaccurate observation of the filler dispersion within the polymer does not allow for accurate quantification of Interface Thermal Resistance and subsequently the prediction of thermal conductivity. Therefore, optimum filler design could not be achieved. Firstly in this report, accurate stereoscopic filler dispersion was observed by FIB-SEM. Secondly, quantification of Interface Thermal Resistance could be achieved by thermal conduction analysis using filler dispersion model. Thirdly, this Interface Thermal Resistance enabled the prediction of the thermal bulk conductivity. Lastly, the prediction made above could be validated by comparison of predicted value to measured value. This result may lead to optimum filler design and thereby to the development of higher thermal radiation materials.
Technical Paper

Strength Analysis of CFRP Composite Material Considering Multiple Fracture Modes

2015-04-14
2015-01-0693
The strength characteristic of CFRP composite materials often is dependent on the internal micro-structural fracture mode. Therefore, in order to precisely predict this strength, each fracture mode and its mutual influence must be taken into account in a simulation. In this paper, intra-ply fracture progression and load characteristics of a cyclic loading test were analyzed, utilizing a material model proposed by Ladeveze et al. The model can evaluate different fracture modes and the stiffness degradation resulting from them. The analyzed results were compared with actual test results to confirm the validity of the analysis. Another analysis was performed without considering the mutual influence of the different fracture modes, and the results were compared to discuss the necessity of the coupling.
Technical Paper

Development of a Novel Ultrasonic Viscometer for Real Time and In-Situ Applications in Engines

2015-04-14
2015-01-0679
A novel ultrasonic viscometer for in-situ applications in engine components is presented. The viscosity measurement is performed by shearing the solid-oil contact interface by means of shear ultrasonic waves. Previous approaches to ultrasonically measure the viscosity suffer from poor accuracy owing to the acoustic miss-match between metal component and lubricant [1]. The method described overcomes this limitation by placing an intermediate matching layer between the metal and lubricant. Results are in excellent agreement with the ones obtained with the conventional viscometers when testing Newtonian fluids. This study also highlights that when complex mixtures are tested the viscosity measurement is frequency dependent. At high ultrasonic frequencies, e.g. 10 MHz, it is possible to isolate the viscosity of the base, while to obtain the viscosity of the mixture it is necessary to choose a lower operative frequency, e.g. 100 kHz, to match the fluid particle relaxation time.
Technical Paper

Finite Element Analysis of Transient Thermoelastic Behavior in Multi-Disc Clutches

2015-04-14
2015-01-0676
The high thermal stresses generated between the contacting surfaces of a multi-disc clutch system (pressure plate, clutch discs, plate separators and piston) due to the frictional heating generated during the slipping, is considered to be one of the main reasons of clutch failure for contact surfaces. A finite element technique has been used to study the transient thermoelastic phenomena of a multi-disc dry clutch. The results present the contact pressure distribution, the temperature evaluation and the heat flux generated along the frictional surfaces. Analysis has been completed using two-dimensional axisymmetric model to simulate the multi-disc clutch. ANSYS software has been used to perform the numerical calculation in this paper.
Technical Paper

Study of Fluid Structure Interaction due to Water Splashing on the Rear Fender of Motorcycles

2015-04-14
2015-01-0673
Automotive OEM's are looking to develop plastic parts with maximum life and durability through virtual simulations with help of CAE tools, thereby saving the mold cost, material cost and time. The design constrains would be manufacturability, loads, boundary condition and aesthetics. This work involves the multi-discipline approach to virtually visualize the effect of fluid structure interaction due to splashing on the rear fender of a motorcycle which acts as mud guard. This study shows effect of splashing of water over rear fender on wet roads. First, the pressure developed on the rear fender due to impingement of water on surface is obtained through a multiphase volume of fluid analysis using CFD software Fluent. Secondly, these pressure values are taken as input in Abaqus software and the part is analyzed for its durability.
Technical Paper

Complete Multi-Discipline Simulation for Sloshing Noise

2015-04-14
2015-01-0672
Predicting sloshing noise as early as possible during the design process has become an increasingly desired simulation for fuel tank suppliers as the demand for quieter vehicles increase. Simulating early on in the design process enables suppliers to build products directly to customer specifications, at a lower cost and shorter timeframe. The procedure to accurately and efficiently analyze complete sloshing noise behavior has to date not been fully established. Current methods rely on indirect noise deduction based on specific positions from Fluid-Structure Interaction (FSI) analyses or uncoupled fluid analysis with separate structural and acoustic analyses. In this paper, we introduce a technique to analyze the fully coupled sloshing noise generated in the fuel tank of an automobile. The technique takes advantage of combining an explicit coupled Lagrangian and Eulerian solver with an acoustics solver.
Technical Paper

Accurate Speed Control of the DC Motor for Anti-Lock Braking System

2015-04-14
2015-01-0654
The permanent-magnet DC motor, which is directly connected to the hydraulic pump, is a significant component of hydraulic control unit (HCU) in an anti-lock braking system (ABS). It drives the pump to dump the brake fluid from the low-pressure accumulator back to master cylinder and makes sure the pressure decreases of wheel cylinder in ABS control. Obviously, the motor should run fast enough to provide sufficient power and prevent the low-pressure accumulator from fully charging. However, the pump don't need always run at full speed for the consideration of energy conservation and noise reduction. Therefore, it is necessary to accurately regulate the speed of the DC motor in order to improve quality of ABS control. In this paper, an accurate speed control algorithm was developed for the permanent-magnet DC motor of the ABS to implement the performance of the system, reduce the noise and save the energy in the meanwhile.
Technical Paper

Implementation and Experimental Study of a Novel Air Spring Combined with Hydraulically Interconnected Suspension to Enhance Roll Stiffness on Buses

2015-04-14
2015-01-0652
Air spring due to its superior ride comfort performance has been widely used in distance passenger transporting vehicles. Since the requirements for ride comfort and handling performance are contradict to each other, handling performance and even roll stability are sacrificed to some extent to obtain good ride comfort. Due to the complex terrain and limited manufacturing level, in the past several years, bus rollover accidents with serious casualties have been reported frequently and bus safety has attracted more and more attention from bus manufacturers in China. On one hand the bus standards have to be raised, and on the other hand, novel solutions which can effectively improve the roll stability of air spring bus are needed to replace the inadequacy of anti-roll bars.
Technical Paper

Vehicle Handling Prediction with Hybrid Uncertainty Using a New Analysis Method

2015-04-14
2015-01-0650
Practical vehicle contains many uncertainties which may result from poorly known or variable parameters or from uncertain inputs. These uncertainties can be presented by fuzzy parameters, random parameters or interval parameters. A new uncertain analysis method is applied to the case in which the vehicle system contains both random parameters and interval parameters. This new uncertain method is a systematic integration of the Polynomial Chaos (PC) theory which accounts for random uncertainty and Chebyshev inclusion function theory which accounts for interval uncertainty. A multi-body vehicle model with both random parameters and interval parameters is used as a numerical model and vehicle handling is investigated in details. The Monte Carlo method combined with the scanning method is used to demonstrate the effectiveness of the proposed method for vehicle handling.
Technical Paper

Study on the Ride Performance of a Semi-Active Air Suspension Vehicle under Complex Models Based on Co-Simulation

2015-04-14
2015-01-0614
In most cases, researches on the ride performance of air suspension system are based on simplified mathematical models which could be too theoretical or not be able to consider the coupling relationship between the various components so that they behave far away from the actual vehicle system. This paper represents the study on the ride performance of an air suspension vehicle based on the accurate complex whole vehicle model which was established though ADAMS and Matlab. The applying of flexible components helped to improve the model accuracy. The stretching and compression test results of the air spring were used to establish the interconnected four-gasbag air suspension system. The vehicle ride performance was studied through the co-simulation between ADAMS and Matlab. The accuracy of the results were verified by the vehicle test results, which demonstrated the reliability of the whole model.
Technical Paper

Optimization of Diesel Oxidation Catalyst (DOC) on Passenger Cars to Improve Emission Robustness

2015-04-14
2015-01-1013
Emission compliance at the production level has been a challenge for vehicle manufacturers. Diesel oxidation catalyst (DOC) plays a very important role in controlling the emissions for the diesel vehicles. Vehicle manufacturers tend to ‘over design’ the diesel oxidation catalyst to ‘absorb’ the production variations which seems an easier and faster solution. However this approach increases the DOC cost phenomenally which impacts the overall vehicle cost. The main objective of this paper is to address the high variation in CO tail pipe emissions which were observed on a diesel passenger car during development. This variation was posing a challenge in consistently meeting the internal product requirement/specification.
Technical Paper

Experimental Vibration Simulation for Heavy Duty Vehicle Seat Suspension with a Multiple-DOF Motion Platform

2015-04-14
2015-01-0613
This paper presents a study on experimental vibration simulation using a multiple-DOF motion platform for heavy duty vehicle seat suspension test. The platform is designed to have 6-DOF with the advantages of high force-to-weight ratio, high dexterity and high position accuracy. It can simulate vehicle vibrations in the x, y and z translational axis and in the roll pitch and yaw axis rotation. To use this platform to emulate the real vibration measured from vehicle seat base under real operation for vehicle seat suspension test in lab, an Inertial Measurement Unit (IMU) is applied to collect the acceleration data from a real vehicle. An estimation algorithm is developed to estimate the displacement from the measured acceleration. The estimated displacement is then used to calculate the length of each leg of the platform so that the platform can generate the motion similar to the measured one.
Technical Paper

Evaluation of New 10.5″ Substrates for Heavy Duty Diesel Applications

2015-04-14
2015-01-1015
Multiple suppliers have developed new cordierite 10.5″ OD substrates in China market. One key issue is to evaluate the feasibility of their applications to diesel SCR markets. To this end, test procedures were conceived and performed towards multiple substrate characteristics. Besides typical parameters such as product dimensions, structures, and material strength, thermo-mechanical properties were characterized by hot vibration, thermal shock and thermal cycle tests. Flow performance before and after tests was characterized by a hot flow bench. Four suppliers were selected to provide product samples which went through these developed rigorous test procedures. Comparisons of multiple properties were made. Conclusions regarding their applicability and recommendations for future work are provided at the end.
Technical Paper

Further Experimental Study of Asymmetric Plugging Layout on DPFs: Effect of Wall Thickness on Pressure Drop and Soot Oxidation

2015-04-14
2015-01-1016
In order to guide the development of asymmetric plugging layout Diesel Particulate Filters, hereafter referred to as “VPL-DPF”, in this paper we present some evaluation results regarding the effect of design parameters on the VPL-DPF performance. VPL-DPF samples which have different wall thicknesses (thin and thick walls) were evaluated in regards to their pressure drop and soot oxidation behaviors, with the aim to optimize the design of DPF structure. As a result of pressure drop evolution during soot loading, contrary to our expectation, in some cases, it was found out that VPL increases the transient pressure drop compared to the conventional plugging layout DPF. That meant there is an appropriate specific optimum wall thickness for adoption of VPL which has to be well defined at its structural design phase. Based on our previous research, it is expected that this result is due to interactions among the different (five) wall flows that exist in a VPL-DPF.
Technical Paper

SCR Architectures for Low N2O Emissions

2015-04-14
2015-01-1030
The high global warming potential of nitrous oxide (N2O) led to its inclusion in the list of regulated greenhouse gas (GHG) pollutants [1, 2]. The mitigation of N2O on aftertreatment catalysts was shown to be ineffective as its formation and decomposition temperatures do not overlap. Therefore, the root causes for N2O formation were investigated to enable the catalyst architectures and controls development for minimizing its formation. In a typical heavy-duty diesel exhaust aftertreatment system based on selective catalytic reduction of NOx by ammonia derived from urea (SCR), the main contributors to tailpipe N2O are expected to be the undesired reaction between NOx and NH3 over SCR catalyst and NH3 slip in to ammonia slip catalyst (ASC), part of which gets oxidized to N2O.
Technical Paper

Heavy Duty Emission Control System Analysis and Optimization for Future Demands

2015-04-14
2015-01-0997
This paper will review several different emission control systems for heavy duty diesel (HDD) applications aimed at future legislations. The focus will be on the (DOC+CSF+SCR+ASC) configuration. As of today, various SCR technologies are used on commercial vehicles around the globe. Moving beyond EuroVI/US10 emission levels, both fuel consumption savings and higher catalyst system efficiency are required. Therefore, significant system optimization has to be considered. Examples of this include: catalyst development, optimized thermal management, advanced urea dosing calibrations, and optimized SCR inlet NO:NO2 ratios. The aim of this paper is to provide a thorough system screening using a range of advanced SCR technologies, where the pros and cons from a system perspective will be discussed. Further optimization of selected systems will also be reviewed. The results suggest that current legislation requirements can be met for all SCR catalysts under investigation.
X