Refine Your Search

Search Results

Technical Paper

42V PWM Conversion & Control Technologies and E/EDS Architecture

2001-03-05
2001-01-0725
The automotive industry is transitioning from the present 14V electrical system to a 42V system. This voltage evolution is due to the number of new systems (safety, fuel economy and customer convenience) being developed which require increased electrical power that a 14V system cannot deliver. During this transition, it will be necessary to control 14V subsystems in a 42V architecture. This paper presents 42V PWM (Pulse Width Modulation) voltage conversion and control technologies as a solution to control these 14V subsystems.
Technical Paper

42V Power Control System for Mild Hybrid Vehicle (MHV)

2002-03-04
2002-01-0519
In the 42V Mild Hybrid System introduced into market by Toyota for the first time in the world, the crankshaft using belt(s) drives the motor/generator (MG). The set-up employs an inverter unit to control the MG electronically. This paper describes the system configuration, operations, characteristic features and development results of the new power control system. The focus is on the MG, the inverter-for-MG-control and energy regeneration, as well as DC/DC converter for the power supply to the 14V devices.
Technical Paper

42V Power Supply Systems Impact for Emerging Market Projects

2005-11-22
2005-01-4115
This paper provides a survey about the consequences of a 42V Power Supply System for new vehicle projects, specially, its impact on directed project for Emerging Markets. At a first moment, it will be described new systems and its demand for additional power availability for future projects, such as electrical steering and brake systems; electrical air conditioning compressor; and electrical water and oil pumps. Following this subject, it will be presented possible alternatives for 14/42V Power Supply Systems, and also its impact over Power and Signal Distribution System components, such as connector, terminals, cables, relays, electrical centers, etc. Finally, the previous presented scenarios will be analyzed under a point of view for the Emerging Market demand for such new proposed systems, looking for best alternative driven.
Technical Paper

42V PowerNet in Door Applications

2000-03-06
2000-01-0450
This article describes the effects of a future 42V automotive electrical system on the vehicle electronics, focusing mainly on the consequences for power semiconductors and their associated technologies. Taking the example of a door module, it then shows how existing 14V loads can be operated on the 42V PowerNet and what advantages result for operation of adjusted 42V loads. The following different problem-solving approaches are presented for typical loads such as power windows, electrically positioned and heated outside mirrors, and central locking: Power windows: A test motor specially developed for the 42V supply is continuously operated directly from the electrical system using suitable power semiconductors. Central locking: A conventional 14V motor is operated at 42V, its operating point being set using pulse width modulation (PWM). Remaining door module: Smaller 14V mirror motors and the control electronics are supplied from a second 14V system.
Technical Paper

42V PowerNet: Providing the Vehicle Electrical Power for the 21st Century

2000-08-21
2000-01-3050
The growth in electrical power demand in future vehicles is expected to significantly exceed the four to five percent annual increases experienced over the last two decades. Continued electrification of traditionally mechanical loads, such as power assist steering, as well as the introduction of new loads, such as AC power points, will overburden the conventional 14V power generation and distribution system. The cost of the electronics to control these new high power systems will add to the challenges associated with the transition. A higher electrical system voltage will be required to meet these ever increasing loads and will help to reduce the control electronics costs. This paper will provide projections of potential future electrical system loads and compare some approaches that could be employed to provide the electrical power to meet the needs.
Technical Paper

42V System for Future Passenger Cars

2001-11-01
2001-28-0019
Fuel economy and emission reduction assume significant importance for automotive research activities and conversion of many mechanical / hydraulic loads to electrical loads helps in realizing this objective. As a result, many electrical power hungry loads are anticipated to be introduced soon in global market with average power requirement exceeding the practical limit of the present automotive electrical system implying the necessity of a suitable higher voltage system. Many OE and component manufacturers have come to a consensus to choose 42V as the system voltage for future passenger cars considering various aspects. This paper highlights the advantages of the high voltage system together with some of the issues associated with the new system.
Technical Paper

42V-PWM - Lighting the Way in the New Millennium

2000-08-21
2000-01-3053
As the vehicle electrical system migrates to the recommended 42-volt system in the future, 42V incandescent lamps will not be practical due to their short filament life. Alternatives to incandescent lamps are discussed. However, due to the inherent simplicity and cost advantage over alternatives, incandescent lamps remain the light source of choice for the auto manufacturer. A scheme to power the current 12V incandescent lamp directly from the 42V line will be presented as a viable low cost solution for the 42V system. This scheme utilized pulse width modulation (PWM) which eliminates the use of expensive DC to DC converters. Implementation schemes, preliminary results, advantages and issues are presented.
Technical Paper

4300 F Thermocouples for Re-Entry Vehicle Applications Part II

1963-01-01
630360
This paper presents a discussion of the component evaluation and design development work performed in developing a 4300 F reentry vehicle nose cap temperature sensor. Material compatabilities, insulation resistance, and atmospheric pressure effects on bare wire calibration data are discussed in some detail. The final design is outlined and the application problems discussed. The probe utilizes: a sintered iridium high temperature sheath (4300 F) and platinum 20% rhodium as the low temperature sheath (3000 F); beryllia as insulation -- hard fired at 4300 F and compacted powder at 3000 F; tungsten versus tungsten 26% rhenium as the thermocouple pair.
Technical Paper

4300°F Thermocouples for Re-entry Vehicle Applications – Part I

1963-01-01
630359
This paper discusses work performed in research, design, and development of sensors for measurement of local dynamic surface temperatures on re-entry vehicles. Included are discussions of the basic requirements and related system design factors, the transducer concepts and sensor assembly configurations considered, and the materials investigations and engineering tests conducted. Design requirements are presented for the twin-lead thermocouple probe temperature sensor chosen as the most feasible concept for early implementation. The most promising thermocouple materials and fabrication processes are defined and the additional precision testing and development requirements for final design are outlined. Information not previously reported in available literature includes preliminary data from tests up to4300°F showing (1) excellent oxidation resistance of Iridium, and (2) oxidation protection of thermocouple elements in “gas tight” sheaths of thoria and zirconia.
Technical Paper

430LNb - A New Ferritic Wire for Automotive Exhaust Applications

2000-03-06
2000-01-0314
The increasing use of ferritic stainless steels (AISI 409, 439, 436 and 441) in automotive exhaust systems, especially for manifolds and catalytic converter canning, has led the authors to develop a new ferritic welding wire, designated 430LNb. This new material is recommended for the GMAW and GTAW processes and provides better metallurgical compatibility with the ferritic base metals, in terms of both thermal expansion and microstructure. The composition of the new welding wire has been adjusted in order to guarantee an entirely ferritic structure in the welds of ferritic sheet materials, together with good resistance of the welds to both wet corrosion and high temperature oxidation, corresponding to the conditions encountered respectively in the colder and hotter parts of the exhaust line. This is achieved by limitation of the C (<0.02%) and N (<0.02%) contents, stabilisation with Nb, such that Nb > 0.05 + 7 (C + N) and Nb < 0.5%, and a Cr content of 17.8-18.8%.
Technical Paper

44 Theoretical Predictions and Experimental Verification of Pass-by Noise Reduction for Small Four-Stroke Motorcycle

2002-10-29
2002-32-1813
To meet stringent noise regulations by governing body and customer expectations for quieter machines, design of low noise-emitting vehicle is becoming increasingly critical. Noise from small capacity four-stroke motorcycle is ranked for its noise intensity emitted, by sound intensity technique. Generally, noise form exhaust ranks first among the sources. Theoretical predictions were made to determine the frequency band being attenuated by the exhaust system. Design of Experiments (L25 Fractional factorial -6 factors and 5 levels), a statistical technique, is used for determining critical parameters, which increase the transmission loss of the exhaust system for four-stroke engine. Best combination of design parameters for maximum transmission loss is selected using Analysis of Variance (ANOVA). Experimental exhaust systems were built based on the theoretical predictions, pass-by noise spectrum were captured and compared.
Technical Paper

47 Development of a Titanium Material by Utilizing Off-Grade Titanium Sponge

2002-10-29
2002-32-1816
Titanium alloy for forging and pure titanium material for exhaust systems have been developed. The forging alloy will be applied to production of lightweight motorcycle frames and the pure titanium will be applied to improve engine performance. The materials have been made inexpensive by the use of off-grade sponge that includes many impurities for production of titanium ingot. Stable characteristics have been obtained by controlling oxygen equivalent after setting the volume of tolerable impurities by considering mechanical properties and production engineering. In spite of low-cost, the material provides the same design strength compared to conventional material, and enables parts production with existing equipment. A review of manufacturing and surface treatment processes indicated a reduction in the price of titanium parts produced with this new material.
Technical Paper

48 Development of Exhaust Valve Seat Insert Material for High Performance Engines

2002-10-29
2002-32-1817
Engines are assigned big subjects such as low emission and low fuel consumption as well as higher output (higher efficiency) in the latest trend of environmental protection. In order to meet these requirements, Air/Fuel ratio of recent high performance engines is being arranged leaner than that of conventional engines. As a result exhaust valve seat inserts used in these engines have problems of their wear resistance because of high exhaust gas temperature. By analyzing wear mechanism under the lean burn conditions, authors developed material for exhaust valve seat inserts which show superior wear resistance under high operating temperature. For the purpose to enhance heat resistance, authors added alloy steel powder for matrix powder and used hard particles which have good diffusion with matrix. The developed material does not include Ni and Co powders for cost saving and has superior machinability.
Journal Article

48 V High-power Battery Pack for Mild-Hybrid Electric Powertrains

2020-04-14
2020-01-0441
Mild hybridisation, using a 48 V system architecture, offers fuel consumption benefits approaching those achieved using high-voltage systems at a much lower cost. To maximise the benefits from a 48 V mild-hybrid system, it is desirable to recuperate during deceleration events at as high a power level as possible, whilst at the same time having a relatively compact and low cost system. This paper examines the particular requirements of the battery pack for such a mild-hybrid application and discusses the trade-offs between battery power capabilities and possible fuel consumption benefits. The technical challenges and solutions to design a 48 V mild-hybrid battery pack are presented with special attention to cell selection and the thermal management of the whole pack. The resulting battery has been designed to achieve a continuous-power capability of more than 10 kW and a peak-power rating of up to 20 kW.
Technical Paper

48V Battery Pack Thermal Design Concept with Temperature Measurement on a Single Cell

2024-04-09
2024-01-2677
Mild hybrid topology with 48V battery packs offers a cost-effective solution with considerable improvement in fuel economy and performance over the conventional vehicles. Thermal management of the battery pack is of utmost importance to ensure a safe, reliable, and optimal operation over the target lifetime and under varying operating conditions. The battery management system needs to take into consideration the temperature of all the cells in the pack for estimating the maximum allowed current for charge/discharge. For example, at lower temperature the coldest cell in the pack would be more probable to lithium plating and hence will be the limiting case while at higher temperature the allowed current should be such that the hottest cell in the pack is taken care. Pack design with temperature sensor for each cell in the pack will increase the cost, hardware, and software complexity.
Technical Paper

48V Boost Recuperation Systems - Golden Gate into the Future

2019-04-02
2019-01-0391
The transformation of the automotive industry will be shaped mainly by the markets North America, Europe and China, which account for more than two thirds of the yearly global car production. All three markets have challenging fuel consumption, CO2 and emission regulations in place and under discussion, which are forcing the automotive industry to make their power train technology more efficient. But not only governmental regulations are driving the change, increasing urbanization intensifies local environmental pollution from vehicles and strains the acceptance of today’s car centric mobility. Electrification is the highly touted magic solution, but is it fast and comprehensive enough to solve above mentioned problems? Is society - car owners, automotive industry and governments - willing to pay the high cost for electrified car technology and infrastructure within a short timeframe of 10 to 15 years?
Technical Paper

48V Mild-Hybrid Architecture Types, Fuels and Power Levels Needed to Achieve 75g CO2/km

2019-04-02
2019-01-0366
48V mild hybrid powertrains are promising technologies for cost-effective compliance with future CO2 emissions standards. Current 48V powertrains with integrated belt starter generators (P0) with downsized engines achieve CO2 emissions of 95 g/km in the NEDC. However, to reach 75 g/km, it may be necessary to combine new 48V powertrain architectures with alternative fuels. Therefore, this paper compares CO2 emissions from different 48V powertrain architectures (P0, P1, P2, P3) with different electric power levels under various driving cycles (NEDC, WLTC, and RTS95). A numerical model of a compact class passenger car with a 48V powertrain was created and experimental fuel consumption maps for engines running on different fuels (gasoline, Diesel, E85, CNG) were used to simulate its CO2 emissions. The simulation results were analysed to determine why specific powertrain combinations were more efficient under certain driving conditions.
Technical Paper

48 V Hybrid System Technologies to Develop the Most Efficient and Cleanest Diesel

2018-05-30
2018-37-0011
The tighter exhaust emissions standards introduced by governments for light duty vehicles are challenging car manufactures to meet at the same time legal emission limits and fuel efficiency improvements, still providing excellent fun to drive characteristics. The Hybrid and Diesel propulsion systems are two important players on that competition. In this scenario, the 48 V hybridization has the potential to become a cost-effective solution compared to High Voltage systems, outlining a new way to approach the well-known trade-off between CO2 and NOx in Diesels. Aim of this study has been to investigate the benefits offered by a P0 48 V Hybrid system when coupled with a 1.6 L Diesel engine in a 7-seat multi-purpose vehicle.
Technical Paper

49 Development of Pb-free Free-Cutting Steel Enabling Omission of Normalizing for Crankshafts

2002-10-29
2002-32-1818
Crankshafts of motorcycles require high strength, high reliability and low manufacturing cost. Recently, a reduction of Pb content in the free-cutting steel, which is harmful substance, is required. In order to satisfy such requirements, we started the development of Pb-free free-cutting steel which simultaneously enabled the omission of the normalizing process. For the omission of normalizing process, we adjusted the content of Carbon, Manganese and Nitrogen of the steel. This developed steel can obtain adequate hardness and fine microstructure by air-cooling after forging. Pb-free free-cutting steel was developed based on Calcium-sulfur free-cutting steel. Pb free-cutting steel is excellent in cutting chips frangibility in lathe process. We thought that it was necessary that cutting chips frangibility of developed steel was equal to Pb free-cutting steel. It was found that cutting chips frangibility depend on a non-metallic inclusion's composition, shape and dispersion.
Technical Paper

4D Radar-Inertial SLAM based on Factor Graph Optimization

2024-04-09
2024-01-2844
SLAM (Simultaneous Localization and Mapping) plays a key role in autonomous driving. Recently, 4D Radar has attracted widespread attention because it breaks through the limitations of 3D millimeter wave radar and can simultaneously detect the distance, velocity, horizontal azimuth and elevation azimuth of the target with high resolution. However, there are few studies on 4D Radar in SLAM. In this paper, RI-FGO, a 4D Radar-Inertial SLAM method based on Factor Graph Optimization, is proposed. The RANSAC (Random Sample Consensus) method is used to eliminate the dynamic obstacle points from a single scan, and the ego-motion velocity is estimated from the static point cloud. A 4D Radar velocity factor is constructed in GTSAM to receive the estimated velocity in a single scan as a measurement and directly integrated into the factor graph. The 4D Radar point clouds of consecutive frames are matched as the odometry factor.
X