Refine Your Search

Search Results

Technical Paper

Interior Trims Design Considerations for Roof Mounted Curtain Airbag

2015-01-14
2015-26-0157
Curtain airbag design offers protection in side crash and it plays a critical role in safety of the vehicle. Curtain airbag provides protection to the occupant in many impact events like frontal offset, side barrier, and side pole and rollover condition. For a vehicle to be safe for any side impact condition, the curtain airbag should deploy and take its final shape before any injury happens to the occupant. During deployment, it is important that the airbag chooses a path of minimum resistance and does not get entangled in interior trims. In reality, the trims always do obstruct the path of airbag deployment in some way. Hence, special care has to be taken care for designing areas surrounding curtain like providing hinges, deflector components etc. to avoid being caught. There are about ten different factors on this deployment is dependent upon. This paper discusses these factors and the effect of the factors on the trims and airbag development.
Technical Paper

Latch Failure Prediction for Side Door Intrusion Test in CAE and Its Correlation with Physical Testing

2015-01-14
2015-26-0159
During vehicle development, numerous test are done to ensure safety & durability of the vehicle. One such test prescribed by regulation (IS 12009:1995) is side door intrusion test (SDIT). This test evaluates strength requirement of a side door of passenger cars to minimize the safety hazards caused by intrusion into passenger compartment in a side impact accident viz., initial, intermediate and peak crush resistance. In current scenario the passenger car manufacturers are striving hard on cost reduction by reducing the development cost. Thus, to predict the exact vehicle performance before its prototype stage is vital. This can be achieved by evaluating performance by the help of Computer aided engineering (CAE) During the SDIT, the load is applied to the outer surface of the door in an inward direction. This inward force applied by loading device is resisted by the door assembly, while door is pivoted at door latch and hinge.
Technical Paper

Reduction of Flow Induced Noise Generated by Power Steering Pump Using Order Analysis

2015-01-14
2015-26-0134
An interior sound quality is one of the major performance attribute, as consumer envisage this as class and luxury of the vehicle. With increasing demand of quietness inside the cabin, car manufactures started focusing on noise refinement and source separation. This demand enforces hydraulic power steering pump to reduce noise like Moan and Whine, especially in silent gasoline engine. To meet these requirements, extensive testing and in-depth analysis of noise data is performed. Structured process is established to isolate noises and feasible solutions are provided considering following analysis. a) Overall airborne noise measurement at driver ear level (DEL) inside the cabin using vehicle interior microphone. b) Airborne and Pressure pulsation test by sweeping pump speed and pressure at test bench. c) Waterfall analysis of pump at hemi anechoic chamber for order tracking and noise determination.
Technical Paper

The Drive for Minimum Fuel Consumption of Passenger Car Diesels: An Analytical Study to Evaluate Key Architectural Choices

2015-09-06
2015-24-2519
Fuel consumption, and the physical behaviours behind it, have never been of greater interest to the automotive engineering community. The enormous design, development and infrastructure investment involved with a new engine family which will be in production for many years demands significant review of the base engine fundamental architecture. Future CO2 challenges are pushing car manufacturers to consider alternative engine configurations. As a result, a wide range of diesel engine architectures are available in production, particularly in the 1.4 to 1.6 L passenger car market, including variations in cylinder size, number of valves per cylinder, and bore:stroke (B/S) ratio. In addition, the 3 cylinder engine has entered the market in growing numbers, despite its historic NVH concerns. Ricardo has performed a generic architecture study for a midsize displacement engine in order to assess the pros and cons of each engine configuration.
Technical Paper

On Cooler and Mixing Condensation Phenomena in the Long-Route Exhaust Gas Recirculation Line

2015-09-06
2015-24-2521
The abatement of nitrogen oxides emissions is a topic of major concern for automotive manufacturers. In addition to aftertreatment solutions such as LNT or SCR devices, the use of exhaust gas recirculation (EGR) is necessary in most of the applications to meet emissions regulations. Due to the high specific humidity of the exhaust gases, a high condensate flow may be generated if EGR gases are significantly cooled down. In the case of long-route EGR (LR-EGR) usage, this condensate flow would reach the compressor wheel. This paper explores the variables governing the condensation process and the potential effects of the liquid droplets and streams on the compressor wheel durability combining experimental and theoretical approach. For this purpose, visualization of both the condensate flow and the compressor wheel are performed. Tests are conducted in a flow test rig in which LR-EGR water content is reproduced by water injection on the hot air mass flow.
Technical Paper

A High Resolution 3D Complete Engine Heat Balance Model

2015-09-06
2015-24-2533
The focus on engine thermal management is rapidly increasing due to the significant effect of heat losses on fuel consumption, engine performance and emissions. This work presents a time resolved, high resolution 3D engine heat balance model, including all relevant components. Notably, the model calculates the conjugated heat transfer between the solid engine components, the coolant and the oil. Both coolant and oil circuits are simultaneously resolved with a CFD solver in the same finite volume model as the entire engine solid parts. The model includes external convection and radiation. The necessary boundary conditions of the thermodynamic cycle (gas side) are mapped from a calibrated 1D gas exchange model of the same engine. The boundary conditions for the coolant and at the oil circuits are estimated with 1D models of the systems. The model is calibrated and verified with measurement data from the same engine as modeled.
Technical Paper

Fuel Transport across the Piston Ring Pack: Measurement System Development and Experiments for Online Fuel Transport and Oil Dilution Measurements

2015-09-06
2015-24-2535
The limitation of fuel entry into the oil sump of an internal combustion engine during operation is important to preserve the tribological properties of the lubricant and limit component wear. For observation and quantification of the effects leading to fuel entry, a highly sensitive and versatile measurement system is essential. While oil sampling from the sump followed by laboratory analysis is a common procedure, there is no system for automatic sampling of all the positions and fast online analysis of the samples. For the research project ‘Fuel in Oil’, a measurement system was developed especially for the described tasks. The system is placed next to the engine in the test cell. Sampling points are the target point of the fuel injector jet and the liner below, the oil sump and the crankcase ventilation system.
Technical Paper

Fuel Transport across the Piston Ring Pack: Development of a Computationally Efficient Simulation Model

2015-09-06
2015-24-2534
Increased quantities of fuel in the lubricating oil of CI engines pose a major challenge to the automotive industry in terms of controlling the oil aging and the wear caused by dilution. Due to a lack of methods to calculate the oil-fuel-composite transport across the ring pack, predicting the fuel ratio in the oil sump has been an extremely challenging task for engine manufacturers. An accurate and computationally efficient simulation model is critical to predict the quantity of fuel diluted in the oil in the preliminary development stage of automotive engines. In this work, the complex composite transport across the piston ring pack was reduced to a simple transport model, which was successfully implemented into a multi-body simulation of the ring pack. The calculation domain was partitioned into two parts, the ring grooves and the piston lands. Inside the grooves the oil flow caused by the pumping and squeezing action of the piston rings was calculated using the Reynolds equation.
Technical Paper

Drive Cycle Particulate and Gaseous Emissions from a Parallel Hybrid Combustion Engine and Electric Powertrain

2015-09-06
2015-24-2538
The emissions from a parallel hybrid combustion engine and electric powertrain operated on a modified New European Drive Cycle (NEDC) was investigated in order to determine the relation between emissions and the road and engine load profile. The effect of simulated electric motor assistance during accelerations on emissions was investigated as a means to reduce particulate and gaseous emissions. The time resolved particulate number and size distribution was measured in addition to gaseous emissions. The combustion engine was a downsized, three cylinder spark ignited direct injection (SIDI) turbocharged engine fuelled with gasoline. Electric motor assistance during accelerations was simulated by reduction of the vehicle mass. This reduced engine load during accelerations. Fuel rich engine transients occurred during accelerations. NOx emissions were reduced with electric assistance due to a reduction in engine load.
Technical Paper

Development and Testing of a Control Algorithm to Assist Drive-Off in the Gradient-A Rapid Control Prototyping Approach

2015-01-14
2015-26-0002
In the present scenario, when the vehicle is maneuvering in the gradient, more clutch and accelerator pedal modulations is needed during stop and go condition. These kinds of pedal modulations are not desirable for many customers as it requires more skilled driving. Failure of doing such actions will even result in engine stalling which becomes an annoyance to such customers. In order to overcome this problem, the low idle speed of the engine can be increased only during the drive-off condition. In this paper, we proposed the development and real-time testing of the control algorithm to increase the engine low idle speed during drive-off. This proposed algorithm detects the drive-off condition and then an offset value is added to increase the low idle speed. Various input conditions are considered to enable or disable the increment of engine low idle speed. The control algorithm has been developed using MATLAB/Simulink tool and tested using ETAS EHOOKS tool.
Technical Paper

A Context Aware Automatic Image Enhancement Method Using Color Transfer

2015-01-14
2015-26-0001
Advanced Driver Assistance Systems (ADAS) have become an inevitable part of most of the modern cars. Their use is mandated by regulations in some cases; and in other cases where vehicle owners have become more safety conscious. Vision / camera based ADAS systems are widely in use today. However, it is to be noted that the performance of these systems is depends on the quality of the image/video captured by the camera. Low illumination is one of the most important factors which degrades image quality. In order to improve the system performance under low illumination, it is required to first enhance the input images/frames. In this paper, we propose an image enhancement algorithm that would automatically enhance images to a near ideal condition. This is accomplished by mapping features taken from images acquired under ideal illumination conditions on to the target low illumination images/frames.
Technical Paper

Development and Control of Evasive Steer Assist Using Rear Wheel Steering

2015-01-14
2015-26-0004
A first step towards autonomous rear-end collision avoidance is to start providing natural support to driver in avoiding collision by steering and braking intervention. The proposed system detects slower-moving and stationary vehicles ahead and classifies the risk of having a rear-end-collision. If the risk is high and there is insufficient space to avoid a collision by braking only, the system helps the driver to steer around the obstacle by steering rear toe angle of the wheels individually. A lot of research already exist in the rear wheel steering but the role of rear wheel steering in collision avoidance is not researched yet in great details. Rear wheel steering is used to increase agility and manoeuvrability of vehicle at lower vehicle speed and stability of vehicle at higher vehicle speed. In the situation of the high speed rear end collision where steering is more effective than braking the strategy of control design of rear wheel steering needs to be dynamically updated.
Technical Paper

Design and Development of Capacitance Type Level Sensor for Automotive Vehicle Application

2015-01-14
2015-26-0015
Fuel level sensor is a device to indicate the level of the fuel in fuel tank fitted in an automobile. This will have features to communicate the fuel level to the dashboard of the vehicle and is of significant attention to the driver during vehicle usage. The advanced instrumentation provides a lot of information on the dashboard display such as information about fuel level, computing mileage, miles to go or miles to empty, fuel economy, average mileage, etc. Presently, the float arm type with Thick Film Resistor(TFR) and Reed switch type fuel level sensors are being used. To have accurate information for computing, the present sensors are not supporting due to its limitations like nonlinearity, fluctuating output due to slosh, output variations in steps and not continuous. The measurement accuracy of the fuel level sensor needs to be focused to rely on the information available on the dashboard instrument.
Technical Paper

Hardware and Combustion Optimization Strategy to Reduce Engine Out Emissions for BS V Limits

2015-01-14
2015-26-0018
With growing need for air quality improvement the emission norms are becoming stringent than ever, triggering a challenge for OEMs. This is because selection of appropriate technology to meet stringent emission standard and engine performance has to be ensured with improved fuel efficiency, and control cost. To comply with future emission standards, intensive efforts are required to optimize the overall engine out emissions with reduce dependency on exhaust after treatment systems. This paper highlights about strategies employed in developing BS V emissions compliant engine for SUV application. The authors have assumed the limits of EURO 5 emission norms as equivalent to BS5 for this purpose. An existing BS IV compliant engine is selected as a base engine and engine out emission targets were defined considering certain conversion efficiency for the after treatment system.
Technical Paper

Challenges Faced for Parameterization & Validation of a Small Gasoline Engine Plant Model for Application of EMS Development

2015-01-14
2015-26-0017
Control algorithm development for typical Engine Management System is a challenging task. To develop a reliable control algorithm, proper closed loop testing environment is required. In such development activity, it is of prime importance to validate the algorithm on a standalone target engine. This can be achieved in engine test cell where the actual engine will be controlled by prototype ECU. But this process has drawbacks like higher testing cost, time consuming, non-reusability of test bed etc. Simulation based engine plant model development for closed loop ECU testing is an effective technique for such application. Various generic engine models are available for such application.to suit a particular target engine these model need to be parameterized with precise engine data. The vehicle parameters used for parameterization are typically obtained from actual test and engine design data.
Technical Paper

Modelling and Simulation of General Path Centrifugal Pendulum Vibration Absorbers

2015-09-06
2015-24-2387
The aim of this paper is the study of the Centrifugal Pendulum Vibration Absorber (CPVA) dynamic behavior, with the background of improved vibration isolation and damping quality through a wide range of operating speeds. The CPVAs are passive devices, which are used in rotating machinery to reduce the torsional vibration without decreasing performance. After a first use of these damping systems in the field of aeronautics, nowadays CPVAs are employed also in railway and automotive applications. In principle, the CPVA is a mass, mounted on a rotor, which moves along a defined path relative to the rotor itself, driven by centrifugal effects and by the rotor's torsional vibrations. The advantage that such absorbers provide is the capability to counteract torsional vibrations arising with frequencies proportional to the mean operating speed. This is in particular the case with Internal Combustion Engines (ICE) where the induced vibrations are caused by the combustions process.
Technical Paper

Modeling Waves in ICE Ducts: Comparison of 1D and Low Order Models

2015-09-06
2015-24-2386
The paper presents a comparative study of various models used to estimate gas dynamics in internal combustion engine (ICE) ducts. 1D models provide a sufficient accuracy, but they are still not implementable on current ECUs. On the other hand, low order models can be real-time but their lack of accuracy and high calibration cost are still a challenging problem. This work aims at presenting a comparison of currently used gas dynamics models to predict transient phenomena in engine ducts. It emphasizes on 1D and low order models. To test under engine-like conditions, the intake path of a virtual engine implemented in GT-Power and a production two cylinder engine are used. Results show a contrast in the performance of the different models, which gives the possibility to evaluate the various approaches. Based on this assessment and depending on the application in hand, the models can be chosen properly to estimate the gas dynamics in internal combustion engine ducts.
Technical Paper

Performance Optimization of Single Cylinder Diesel Engine Oil Pump through PRV and Rotor System

2015-01-14
2015-26-0028
Oil pump is one of the important engine parasitic loads which takes up engine power through crankshaft to deliver oil flow rate according to engine demand to maintain required oil pressure. The proper functioning of oil pump along with optimum design parameters over various operating conditions is considered for required engine oil pressure. Pressure relief passage is also critical from design point of view as it maintains the required oil pressure in the engine. Optimal levels of oil pressure and flow are very important for satisfied performance and lubrication of various engine parts. Low oil pressure will lead to seizure of engine and high oil pressure leads to failure of oil filters, gasket sealing, etc. Optimization of pressure relief passage area along with other internal systems will also reduce the power consumed by the pump.
Technical Paper

An ICE Map Generation Tool Applied to the Evaluation of the Impact of Downsizing on Hybrid Vehicle Consumption

2015-09-06
2015-24-2385
Legal constraints concerning CO2 emissions have made the improvement of light duty vehicle efficiency mandatory. In result, vehicle powertrain and its development have become increasingly complex, requiring the ability to assess rapidly the effect of several technological solutions, such as hybridization or internal combustion engine (or ICE) downsizing, on vehicle CO2 emissions. In this respect, simulation is nowadays a common way to estimate a vehicle's fuel consumption on a given driving cycle. This estimation can be done with the knowledge of vehicle main characteristics, its transmission ratio and efficiency and its internal combustion engine fuel consumption map. While vehicle and transmission parameters are relatively easy to know, the ICE consumption map has to be obtained through either test bench measurements or computation.
Technical Paper

Spark Ignition Engine Simulation Using a Flamelet Based Combustion Model

2015-09-06
2015-24-2402
Three-dimensional Computational Fluid Dynamics (CFD) has become an integral part in analysing engine in-cylinder processes since it provides detailed information on the flow and combustion, which helps to find design improvements during the development of modern engine concepts. The predictive capability of simulation tools depends largely on the accuracy, fidelity and robustness of the various models used, in particular concerning turbulence and combustion. In this study, a flamelet model with a physics based closure for the progress variable dissipation rate is applied for the first time to a spark ignited IC engine. The predictive capabilities of the proposed approach are studied for one operating condition of a gasoline port fuel injected single-cylinder, four-stroke spark ignited full-metal engine running at 3,500 RPM close to full load (10 bar BMEP) at stoichiometric conditions.
X