Refine Your Search

Search Results

Technical Paper

Applying Camera Matching Methods to Laser Scanned Three Dimensional Scene Data with Comparisons to Other Methods

2015-04-14
2015-01-1416
In the field of accident reconstruction, a reconstructionist will often inspect a crash scene months or years after a crash has occurred. With this passage of time important evidence is sometimes no longer present at the scene (i.e. the vehicles involved in the crash, debris on the roadway, tire marks, gouges, paint marks, etc.). When a scene has not been totally documented with a survey by MAIT or the investigating officers, the reconstructionist may need to rely on police, fire department, security camera, or witness photographs. These photos can be used to locate missing evidence by employing traditional photogrammetric techniques. However, traditional techniques require planar surfaces, matched discrete points, or camera matching at the scene.
Technical Paper

Evaluation of Corpuscular Particle Method (CPM) in LS-DYNA for Airbag Modeling

2020-04-14
2020-01-0978
This paper presents a systematic study to assess maturity of Corpuscular Particle Method (CPM) to accurately predict airbag deployment kinematics and its overall responses. The study was performed in three phases: (1) a correlation assessment of CPM predicted inflator characteristics to closed tank tests; (2) a correlation assessment of CPM predicted airbag deployment kinematics, airbag pressure, reaction force from a static deployment of a Driver Airbag (DAB) and (3) a correlation prediction of the impactor force by CPM versus impactor force from physical drop tower tests. These studies were repeated using the Uniform Pressure Method (UPM), to compare the numerical methods for their accuracy in predicting the physical test, computational cost, and applicability. Results from the study suggest that CPM satisfies the fundamental energy laws, and accurately captures the realistic airbag deployment kinematics, especially during the early deployment stage, unlike UPM.
Technical Paper

The Application of Augmented Reality to Reverse Camera Projection

2019-04-02
2019-01-0424
In 1980, research by Thebert introduced the use of photography equipment and transparencies for onsite reverse camera projection photogrammetry [1]. This method involved taking a film photograph through the development process and creating a reduced size transparency to insert into the cameras viewfinder. The photographer was then able to see both the image contained on the transparency, as well as the actual scene directly through the cameras viewfinder. By properly matching the physical orientation and positioning of the camera it was possible to visually align the image on the image on the transparency to the physical world as viewed through the camera. The result was a solution for where the original camera would have been located when the photograph was taken. With the original camera reverse-located, any evidence in the transparency that is no longer present at the site could then be replaced to match the evidences location in the transparency.
Technical Paper

Typical Acceleration Profiles for Left-Turn Maneuvers Based on SHRP2 Naturalistic Driving Data

2021-04-06
2021-01-0889
The goal of this study was to use naturalistic driving data to characterize the longitudinal and lateral accelerations of vehicles making a left turn from a stop at signalized intersections. Left turn maneuvers at 15 intersections were extracted from the Second Strategic Highway Research Program (SHRP2) database. A subset of 420 traversals for lead vehicles that were initially stopped and negotiated their left turns unimpeded by oncoming traffic was used for the analysis. For each traversal, we extracted information regarding the driver’s sex and age, the vehicle type, the vehicle’s longitudinal and lateral acceleration, and on-board forward-facing video. From the video, we further extracted information about whether the road was dry/wet and if it was day/night, and from aerial photographs of the intersections we extracted the radius of each left turn path through the intersection.
Technical Paper

A Solution for a Fail-Operational Control of Steer-by-Wire System without Mechanical Backup Connection

2021-04-06
2021-01-0931
The past five years have seen significant research into autonomous vehicles that employ a by-wire steering rack actuator and no steering wheel. There is a clear synergy between these advancements and the parallel development of complete Steer-by-Wire systems for human-operated passenger vehicle applications. Steer-by-Wire architectures presented thus far in the literature require multiple layers of electrical and/or mechanical redundancy to achieve the safety goals. Unfortunately, this level of redundancy makes it difficult to simultaneously achieve three key manufacturer imperatives: safety, reliability, and cost. Hindered by these challenges, as of 2020 only one production car platform employs a Steer-by-Wire system. This paper presents a Steer-by-Wire architectural solution featuring fail-operational steering control architected with the objective of achieving all system safety, reliability, and cost goals.
Technical Paper

An Evaluation of Two Methodologies for Lens Distortion Removal when EXIF Data is Unavailable

2017-03-28
2017-01-1422
Photogrammetry and the accuracy of a photogrammetric solution is reliant on the quality of photographs and the accuracy of pixel location within the photographs. A photograph with lens distortion can create inaccuracies within a photogrammetric solution. Due to the curved nature of a camera’s lens(s), the light coming through the lens and onto the image sensor can have varying degrees of distortion. There are commercially available software titles that rely on a library of known cameras, lenses, and configurations for removing lens distortion. However, to use these software titles the camera manufacturer, model, lens and focal length must be known. This paper presents two methodologies for removing lens distortion when camera and lens specific information is not available. The first methodology uses linear objects within the photograph to determine the amount of lens distortion present. This method will be referred to as the straight-line method.
Technical Paper

Deliver Signal Phase and Timing (SPAT) for Energy Optimization of Vehicle Cohort Via Cloud-Computing and LTE Communications

2023-04-11
2023-01-0717
Predictive Signal Phase and Timing (SPAT) message set is one fundamental building block for vehicle-to-infrastructure (V2I) applications such as Eco-Approach and Departure (EAD) at traffic signal controlled urban intersections. Among the two complementary communication methods namely short-range sidelink (PC5) and long-range cellular radio link (Uu), this paper documents the work with long-range link: the complete data chain includes connecting to the traffic signals via existing backhaul communication network, collecting the raw signal phase state data, predicting the signal state changes and delivering the SPAT data via a geofenced service to requests over HTTP protocols. An Application Programming Interface (API) library is developed to support various cellular data transmission reduction and latency improvement techniques.
Technical Paper

The Aerodynamic Design of the Goldenrod - To Increase Stability, Traction, and Speed

1966-02-01
660390
A major consideration for world land speed record automobiles is the influence of aerodynamic design on traction, stability, and speed. The features of the successful Goldenrod are described through preliminary design, wind tunnel testing, modifications, performance calculations, and vehicle tests on the Bonneville Salt Flats. These features include lowest minimum drag coefficient (0.1165); download (negative lift) from the shape of the basic body alone; and high-speed stability without the addition of horizontal or vertical fins, spoilers, or weight (ballast). Design requirements were achieved by the model in wind tunnel tests and the car performed as predicted by these tests, setting a new world record in third gear. The Goldenrod appears to have sufficient potential to also challenge the world speed record for piston engined aircraft.
Technical Paper

Modeling Current Generation Catalytic Converters: Laboratory Experiments and Kinetic Parameter Optimization - Steady State Kinetics

1992-02-01
920096
An experimental data base of catalyst conversion efficiency was generated, using a tubular flow reactor which contained either a Pt/Rh (5:1; 40g/ft3) or a Pd/Rh (5:1; 40g/ft3) catalyst sample, for the purpose of updating the kinetic rate constants in the Ford TWC model. Steady-state conversion efficiency of CO, NO, C3H8, C3H6, H2 and O2 through these catalysts were determined for a variety of inlet species concentrations and inlet gas temperatures. These data were obtained for values of redox ratio between 0.5 (excess O2) and 4.0, and inlet gas temperatures between 371°C and 593°C. All experimental details and modeling procedures utilized in obtaining an optimized set of kinetic parameters are included. Results of these experiments show significant improvement in CO and NO conversion efficiency and an increase in NH3 production for both catalyst formulations over previous generation catalyst formulations when redox ratio is greater than unity.
Technical Paper

Effects of Surface Anomalies and Tire Mechanics on ATV Tire Friction Coefficients

1996-02-01
961000
In modeling the mechanics of an ATV in acceleration, stopping, hill climbing or descending maneuvers, it is necessary to understand the nature of the frictional forces on the tires of the vehicle. The tire's force characteristics in the longitudinal direction are not as simple as for automotive tires acting on paved surfaces. The interaction of the lugs of the tires with the soil, grass, rocks, roots, and surface anomalies all affect the longitudinal forces transmitted to the vehicle. The typical modeling of the tire's interaction as a force being equal to the normal force times some constant friction coefficient is totally inadequate. Unlike normal tires, the ATV tire has a pulsing effect while at limit conditions. Even on level pavement the pulsing persists which indicates that is not necessarily a surface interaction phenomenon. The frictional spikes are significantly above 1.0 rising as high as 1.89 and will affect one's prediction of the motion of the vehicle.
Technical Paper

Numerical Approach for the Characterization of the Venting Process of Cylindrical Cells under Thermal Runaway Conditions

2024-05-06
2024-01-2900
Increasing awareness of the harmful effects on the environment of traditional Internal Combustion Engines (ICE) drives the industry toward cleaner powertrain technologies such as battery-driven Electric Vehicles (EV). Nonetheless, the high energy density of Li-Ion batteries can cause strong exothermic reactions under certain conditions that can lead to catastrophic results, called Thermal Runaway (TR). Hence, a strong effort is being made to understand this phenomenon and increase battery safety. Specifically, the vented gases and their ignition can cause the propagation of this phenomenon to adjacent batteries in a pack. In this work, Computational Fluid Dynamics (CFD) is employed to predict this venting process in an LG18650 cylindrical battery. The shape of the venting cap deformation obtained from experimental results was introduced in the computational model.
Technical Paper

A Comparative Analysis of Thermal Runaway Propagation in Different Modular Lithium-Ion Battery Configuration

2024-05-06
2024-01-2901
Thermal runaway is a critical safety concern in lithium-ion battery systems, emphasising the necessity to comprehend its behaviour in various modular setups. This research compares thermal runaway propagation in different modular configurations of lithium-ion batteries by analysing parameters such as cell spacing and applying phase change materials (PCMs) and Silica Aerogel. The study at the module level includes experimental validation and employs a comprehensive model considering heat transfer due to thermal runaway phenomena. It aims to identify the most effective modular configuration for mitigating thermal runaway risks and enhancing battery safety. The findings provide valuable insights into the design and operation of modular lithium-ion battery systems, guiding engineers and researchers in implementing best practices to improve safety and performance across various applications.
Technical Paper

Model-Based Knowledge Management in HV Battery Development

2024-05-06
2024-01-2902
In the dynamic landscape of battery development, the quest for improved energy storage and efficiency has become paramount. The contemporary energy transition, coupled with growing demands for electric vehicles, renewable energy sources, and portable electronic devices, has underscored the critical role that batteries play in our modern world. To navigate this challenging terrain and harness the full potential of battery technology, a well-defined and comprehensive data strategy resp. knowledge management strategy are indispensable. Conversely, the imminent and rapid progression of artificial intelligence (AI) is poised to have a substantial impact on the forthcoming landscape of work and the methodologies organizations employ for the management of their knowledge management (KM) procedures. Conventional KM endeavors encompass a spectrum of activities such as the creation, transmission, retention, and evaluation of an enterprise’s knowledge over the entire knowledge lifecycle.
Technical Paper

Simulation and Evaluation of Battery Aging in Electric Hybrid Storage Systems

2024-05-06
2024-01-2903
The extension of traction batteries from electric vehicles with supercapacitors is regularly discussed as a possibility to increase the lifetime of lithium-ion batteries as well as the performance of the vehicle drive. The objective of this work was to validate these assumptions by developing a simulation model. In addition, an economic analysis is performed to qualitatively classify the simulation results. Initially, a hybrid energy storage system consisting of battery and supercapacitor was developed. A semi-active hybrid energy storage topology was selected. Subsequently, the selection of use cases as well as the application-specific definition of load cycles took place. In addition, the control strategy was further developed so that a simulation on lifetime was made possible. The end-of-life of the battery cells was defined, according to the USABC guideline values.
Technical Paper

Macroscopic and Ignition Characteristics of High-Pressure Sprays of Single-Component Fuels

1998-02-23
981069
Using a combination of imaging techniques, we have produced a database of the macroscopic properties of sprays produced by a common-rail injection system in a diesel simulation cell. The parameters of the data base include injection pressure (40, 80 and 150 MPa), gas-side temperature (387, 800 and 1100 K), gas density (12, 25 and 30 kg/m3), injector nozzle hole size (0.17 and 0.20 mm) and injection programs (with and without pilot injection). Single component fuels (heptane and dodecane) were used in order to simplify data interpretation and modeling. The spray characteristics which were measured include the initial “dispersion” angle of the nozzle, initial spray tip speeds, and spray tip penetration vs. time for both the liquid and vapor parts of the spray. The sites of initial self ignition and combustion propagation within the sprays were visualized, and a luminous delay was measured for several of the operating conditions.
Technical Paper

Numerical Modeling of NO Reduction Over Cu-ZSM-5 Under Lean Conditions

1997-02-24
970752
Some catalysts such as copper zeolites have shown promise for direct NO decomposition and selective NO reduction via hydrocarbons in lean exhausts. This paper describes modeling calculations for the performance of a Cu-ZSM-5 NOx reduction catalyst. The numerical model simulates the multi-component transport and reaction processes that occur within a catalyzed monolith support. The surface boundary conditions for the reacting species are satisfied through use of multi-dimensional Newton-Raphsson iteration. The model is used to formulate global rate expressions for the oxidation of C3H6 and the reduction of NO by adjusting kinetic parameters until predicted conversion efficiencies match experimental data. Then the numerical model is compared to data from higher space velocities to test the validity of the kinetic model. The comparison at higher space velocity shows reasonable agreement, although additional optimization of the kinetic parameters is possible.
Technical Paper

Lack of Relationship Between Vehicle Damage and Occupant Injury

1997-02-24
970494
A common misconception formulated is that the amount of vehicle crash damage due to a collision, offers a direct correlation to the degree of occupant injury. This paper explores this concept and explains why it is false reasoning. Explanations with supporting data are set forth to show how minor vehicle damage can relate or even be the major contributing factor to occupant injury. Mathematical equations and models also support these findings.
X