Refine Your Search

Search Results

Technical Paper

Design and Analysis Procedures for Shafts and Splines

1968-02-01
680024
A general analytical and test procedure approach is presented for shafts under fatigue loading conditions. Construction and interpretation of comprehensive analytical curves are outlined, comprising the basic loading conditions of torsion alone, bending alone, combined bending and torsion, and cumulative damage. General spline design curves derived from fatigue tests are presented for torsional fatigue loading. The concept of nominal stress is used in correlating test and analytical curves, introducing simplicity and perspective in interpreting such complex factors on fatigue life as stress concentration, physical properties, and mode of loading.
Technical Paper

Design and Testing of Ovate Wire Helical Springs

1993-10-01
932891
This paper describes the results of the study and research on ovate wire helical springs which have been jointly conducted by the members of the Japan Society for Spring Research consisting of the engineers from material suppliers, wire and spring producers and automotive manufacturers as well as researchers at Japanese universities. Attention is focused particularly on two types of wire cross sections, typical elliptical shape and Fuchs' egg-shape. Stresses on these two cross sections were analyzed by numerical calculations within the range of practical specification, and then the results have been compared with those of round wire spring. As a result, it has been found that the elliptical wire spring is superior to Fuchs- egg-shaped one for general application. Simple designing methods for the both types of wire helical springs have been developed based on the findings from the stress analysis.
Technical Paper

Fluid Dynamic and Acoustic Modeling of Concentric-Tube Resonators/Silencers

1991-02-01
910072
Two models used for the prediction of noise attenuation in silencers have been evaluated. One is a full non-linear one-dimensional fluid-dynamic model, representing the entire engine (from the air cleaner to the tail pipe). The other is a linear acoustic model, representing a silencer and the exhaust and tail pipes. The evaluation was made by comparing the models' predictions to transmission lose measurements obtained with a set of concentric-tube resonators under speaker excitation at room temperature. This represents a test of the models in the linear range (small pressure pulsation amplitudes). The comparisons showed that both of the models performed well under these conditions. For the non-linear model this comparison represents validation for only one special case, since the main application of the model is to prediction of engine performance, insertion loss in silencer, absolute level of noise radiated from tailpipe and engine backpressure.
Technical Paper

A Scenario-Based Test Selection and Scoring Methodology for Inclusion in a Safety Case Framework for Automated Vehicles

2024-04-09
2024-01-2644
Effectively determining automated driving system (ADS)-equipped vehicle (AV) safety without relying on testing an infeasibly large number of driving scenarios is a challenge with wide recognition in industry and academia. The following paper builds on previous work by the Institute of Automated Mobility (IAM) and Science Foundation Arizona (SFAz), and proposes a test selection and scoring methodology (TSSM) as part of a safety case-based framework being developed by the SFAz to ensure the safety of AVs while addressing the scenario testing challenge. The TSSM is an AV verification and validation (V&V) process that relies, in part, on iterative, partially random generation of AV driving scenarios. These scenarios are generated using an operational design domain (ODD) and behavioral competency portfolio, which expresses the vehicle ODD and behavioral competencies in terms of quantifiable amounts or intensities of discrete components.
Technical Paper

Design of a Dual-Motor Powertrain with Magnetorheological Planetary Transmission for Electric Vehicles

2024-04-09
2024-01-2636
The powertrain system plays a crucial role in electric vehicles, exerting significant impact on both the dynamic and economic performances. A breakthrough has been observed by using the dual-motor powertrain system, which outperformed its single-motor counterparts. This study reports a dual-motor powertrain with magnetorheological technology. The powertrain consists of two motors, two magnetorheological brakes and a planetary gear set. Via regulating the brakes, the power transmission flow can be controlled to realise different torque ratios and velocities. The synergetic control of motors and brakes is capable of achieving smooth gear shifting without interruption. This paper details the design of the powertrain system: the structural configuration of the magnetorheological brakes is highlighted, the magnetic field distribution of the brakes under different currents is simulated by COMSOL Multiphysics, and the torque capacities of the brake are also calculated.
Technical Paper

Innovating Mobility: The Design and Optimization of an Efficient Two-Speed Transmission for EVs

2024-04-09
2024-01-2638
With the shift towards electrification, automakers are constantly looking for ways to increase efficiency of the electric vehicles (EVs). Whether through advanced materials, battery technology, powertrain optimization, software optimization, or reliability improvements, these strategies can help improve EV range, performance, and energy efficiency, making EVs a more attractive option for consumers. This paper focuses on powertrain optimization by utilizing a two-speed transmission instead of a conventional single-speed solution. Multi-speed transmissions offer faster acceleration, increased speed, better gradeability, and reduced energy consumption, which translates to increased vehicle range. Cost and space are critical factors in development and are considered when selecting architecture. The gear ratios are selected by solving an optimization problem to minimize the energy loss and maximize the dynamic performance.
Technical Paper

Automotive Intermediate Shaft Design & Bearing Selection for a Propulsion Switched Reluctance Motor in a Battery Electric Vehicle

2024-04-09
2024-01-2886
Optimized half-shaft design is paramount to deliver power from a drive unit and gearbox to the wheels of a vehicle. An intermediate shaft must be able to deliver rotational force to the wheel with acceptable efficiency to prevent any sort of torque losses or torque steer when coupled with another shaft. Intermediate shafts must be optimized for torque delivery, stiffness, weight, and efficiency relative to the CV shaft it is coupled to. For the unique switched reluctance motor that is utilized in this study, the shaft will be supported by a fixed housing in which a bearing will be affixed. It is critical that through these studies an attempt is made to optimize all these conditions by selecting the best materials as well as study the effects of having a tubular shaft as opposed to one that is solid using computer software. This analysis was completed with specific constraints in mind with respect to both shaft performance as well as packaging constraints.
Technical Paper

Improved Accuracy in Calculating of Isolation Resistance of xEV High-Voltage Systems

2024-04-09
2024-01-2774
The integrity of isolation resistance of the xEV high-voltage subsystems is critically important to ensure the safety of vehicle occupants. The term xEV collectively refers to the hybrid electrical vehicle (HEV), plug-in HEV (PHEV), battery electric vehicle (BEV), fuel cell electric vehicle (FCEV), and range extended electric vehicles (REEV) etc. As described in the Federal Motor Vehicle Safety Standards (FMVSS) 305, the isolation resistance is indirectly determined based on the measured voltages. The existing formula used for calculating the isolation resistance does not take into account the finite input-resistance of the voltage measurement equipment. The assumption of infinite input resistance of the voltage measurement equipment leads to significant error, which will be quantified in this paper. The proposed method in this paper includes the input-resistance and results in accurate calculation of isolation resistance.
Technical Paper

Wheel & Axle Disconnect Controls on Hybrid Electric Powertrains

2024-04-09
2024-01-2776
With the proliferation of electric vehicles in the market, it has become important for Automotive OEMs (Original Equipment Manufacturers) to focus on delivering a higher driving range while also maximizing performance. One approach OEMs are actively considering in meeting this goal is to include a secondary drive axle disconnect into the powertrain which has the potential to improve the overall driving range by about 6-8.3% [4]. This paper outlines the need for a novel controls architecture to make the Powertrain controls software modular and to reduce the development time needed to provide robust powertrain control software. To do this, the electrified powertrain torque controls at STELLANTIS NV takes a decentralized controls architecture approach, by separating the axle disconnect controls subsystem (ADCS) from the primary path of torque controls. The ADCS takes in information such as the desired axle state and controls the axle disconnect actuators to achieve that state.
Technical Paper

Seatback Failures and Human Tolerance in Severe Rear Impacts

2024-01-16
2024-26-0003
Seatback and head restraints are the primary restraining devices in rear-impact collisions. The seatback failures expose front seat occupants to dive deep into the rear compartment survival space. Furthermore, it allows the occupants to get in a position with lower spinal tolerance to the impact direction. This paper employs sled tests to demonstrate the dangers of seatback failures in severe rear impact by allowing the occupants to orient their spine in its lowest tolerance zone to the impact direction. Furthermore, the sled test shows the potential of head pocketing phenomena and torso augmentation producing compressive cervical spine loading enough to cause first-order neck buckling. Finally, the results of collapsing seatback dynamics are compared to the strong seatback performance by conducting a similar test with a strong ABTS seatback.
Technical Paper

Simulation Techniques for Liquid Gasket Sealing Performance Prediction

2024-01-16
2024-26-0267
In the automotive industry, silicon adhesive has become increasingly popular due to its benefits in ease of assembly and cost savings associated with material and manufacturing processes. To meet the imperative of minimizing both time and expenses during the project's development phase, it becomes essential to select the appropriate gasket material and an optimal flange design at the outset of the design process. In order to achieve stringent emission standards such as Real Driving Emission (RDE) and Corporate Average Fuel Economy (CAFE) norms, a better sealing performance is an essential parameter. Various types of liquid gaskets such as silicon rubber based Room Temperature Vulcanizing (RTV) sealants and thermoset plastic based Anaerobic sealants are widely used in an Internal Combustion engine. They are commonly used for the components such as oil sump, bedplate, and gearbox housings, etc.
Technical Paper

Statistical Analysis on Wear Behavior of Aluminum Alloy2024–Silicon Carbide–Fly Ash Metal Matrix Composites

2024-05-06
2024-01-5058
Aluminum and its alloys entered a main role in the engineering sectors because of their applicable characteristics for indispensable applications. To enhance requisite belongings for the components, the composition of variant metal/nonmetal with light metal alloys is essential in the manufacturing industries. To enhance the wear resistance with significant strength property of the aluminum alloy 2024, the reinforcement SiC and fly ash (FA) were added with the designation Al2024 + 10% SiC; Al2024 + 5% SiC + 5% FA; and Al2024 + 10% FA via stir-casting technique. The wear resistance property of the composites was tested in pin-on-disc with a dry-sliding wear test procedure. The experiment trials were designed in Box–Behnken design (BBD) by differing the wear test parameters like % of reinforcement, sliding distance (m), and load (N).
Technical Paper

Dynamic Speed Limit for Self-Identifying Platoons of Mixed Vehicular Traffic on Freeways under Connected Environment

2024-04-09
2024-01-1996
About 200,000 miles (~8 times around the earth) comprise the National Highway System, which carries most of the highway freight and traffic in the U.S. The core of the nation’s highway system is the 48,254 miles of Interstate Highways, which comprise just over 1 percent of highway mileage but carry over 25% of all highway traffic. Americans traveled a total of 5.3 trillion miles by all transportation modes in 2016, an average of 16,400 miles per person. About 80 percent was by automobile, truck, or motorcycle. Due to a high contribution to mobility and energy consumption, freeways and highway have been attracting researchers to move more vehicles faster and in energy-efficient manner. The research interest in motorways and highways has been driven by their significant impact on transportation efficiency and energy consumption, as they facilitate the movement of vehicles at higher speeds while optimizing energy usage.
Technical Paper

Optimization of Surfactant and Catalyst Modified Urea-Water Solution Formulation for Deposit Reduction in SCR Aftertreatment Systems

2022-03-29
2022-01-0541
Selective Catalytic Reduction is the primary method of NOX emission abatement in lean-burn internal combustion. This process requires the decomposition of a 32.5 wt. % urea-water solution (UWS) to provide ammonia as a reducing agent for NOX, but at temperatures < 250 °C the injection of UWS is limited due to the formation of harmful deposits within an aftertreatment system and decreased ammonia production. Previous work has sufficiently demonstrated that the addition of surfactant and a urea/isocyanic acid (HNCO) decomposition catalyst to UWS can significantly decrease deposit formation within an aftertreatment system. The objective of this work was to further optimize the modified UWS formulation by investigating different types and concentrations of surfactants and titanium-based urea/HNCO catalyst. Because there is a correlation between surface tension and water evaporation, it was theorized that minimizing the surface tension of UWS would result in decreased deposit formation.
Technical Paper

Cross-Domain Control Architecture - Single Master Controller for Propulsion and Chassis Automotive Domains

2022-03-29
2022-01-0746
The modern automotive industry field is in the middle of a huge transformation of the Electric & Electronics (E/E) system design in order to meet the future mobility trends: driven by autonomy, electrification and connectivity. Autonomy (as defined by SAE J3016) implies five levels of driving automation and will include an explosion of sensors and computing power. As well, functional safety and cybersecurity constraints will increase. Electrification implies replacing energy from thermal sources with electricity from the wall and will include enhanced integration between sub-systems and components, along with higher speed in real time controls. Connectivity will provide huge data mining capability, along with enhanced off-board communication (so-called “Vehicle-to-Everything” or V2X) and remote software updates (FOTA).
Journal Article

Development of DPF regeneration system under all operating conditions for generators

2022-01-09
2022-32-0050
In order to resolve global atmospheric environmental issues, latest diesel engines for industrial machinery are required to reduce the emission of harmful gases such as carbon monoxide (CO), hydrocarbon (HC) and nitrogen oxide (NOx), and particulate matter (PM). For this reason, it is essential to mount exhaust gas after treatment devices such as diesel particulate filter (DPF) and diesel oxidation catalyst (DOC) on diesel engine. Engines mounted DPF must carry out DPF regeneration that burns and removes PM. Generator engine has characteristic of being operated for a long time under light load condition with low exhaust temperature which is difficult for DPF regeneration. In addition, generating white smoke and inlet face clogging of DOC are caused by accumulated soot containing HC at the DOC when operating engine continuously under light load condition.
Technical Paper

Using PC-Crash to Analyze Motorcycle Slide to Stop Dynamics

2022-03-29
2022-01-0822
PC-Crash is an accident reconstruction program that enables the user to analyze vehicle collision dynamics and trajectory models. This research paper presents the utilization of PC-Crash to analyze motorcycle slide-to-stop dynamics. For this study, existing motorcycle slide-to-stop data from SAE 2019-01-0426 will be simulated and analyzed in PC-Crash. The selected dataset consists of three motorcycles: a 2002 Kawasaki ZRX-1200R, a 2006 Yamaha YZF-R6, and a 2013 Ninja EX300. Six of the thirteen slide-to-stop tests collected by Fatzinger [1] were simulated and analyzed in PC-Crash. The motorcycle initial ground contact speeds range from 37-52 mph. Parameters such as vehicle weight, sliding friction factor, motorcycle sliding trajectory, and yaw trajectory will be accounted for in each PC-Crash simulation. All tests were simulated using a 2D and 3D motorcycle model in PC-Crash.
Journal Article

Investigation into Low-Temperature Urea-Water Solution Decomposition by Addition of Titanium-Based Isocyanic Acid Hydrolysis Catalyst and Surfactant

2020-04-14
2020-01-1316
Mitigation of urea deposit formation and improved ammonia production at low exhaust temperatures continues to be one of the most significant challenges for current generation selective catalytic reduction (SCR) aftertreatment systems. Various technologies have been devised to alleviate these issues including: use of alternative reductant sources, and thermal treatment of the urea-water solution (UWS) pre-injection. The objective of this work was to expand the knowledge base of a potential third option, which entails chemical modification of UWS by addition of a titanium-based urea/isocyanic acid (HNCO) decomposition catalysts and/or surfactant to the fluid. Physical solid mixtures of urea with varying concentrations of ammonium titanyl oxalate (ATO), oxalic acid, and titanium dioxide (TiO2) were generated, and the differences in NH3 and CO2 produced upon thermal decomposition were quantified.
Technical Paper

Design of Plastic Cylinder Head Cover in Place of Aluminum Cylinder Head Cover for Light Duty Diesel Engines for Weight Reduction Purpose

2020-09-25
2020-28-0468
Currently automotive design is facing multi facet challenges such as reduction in greenhouse gases, better thermal management, and low cost solution to market, vehicle weight management etc. Considering these challenges, efforts had been taken to improve weight management of engine while optimizing the cost of it. Good ‘engine breathing’ is usually associated with efficient intake system e.g. high flow air filter, a well-designed manifold, cylinder block, cylinder head and cylinder head cover etc. However, efficient ‘crankcase breathing’ is an equally important function of any engine. Even in a new engine, the combustion pressure will inevitably pass the piston rings into the crankcase. If an engine’s breathing system should become blocked or restricted, the crankcase will pressurize causing lots of problems to the engine. Prior to 1963 most vehicle engines vented their vapors and oil deposits to atmosphere and the road surface.
Technical Paper

Review and Assessment of the Material’s Compatibility for Rubbers and Elastomers in Hydrogen Internal Combustion Engines

2022-03-29
2022-01-0331
Hydrogen Internal Combustion Engines (H2-ICEs) are being investigated due to their minimal criteria pollutant and zero CO2 tailpipe emissions. However, oil filters and non-hot joint gaskets have rubber material that can be damaged and deteriorate due to direct or indirect exposure to the high temperature and high-pressure hydrogen in a H2-ICE. Thus, the effects on the properties of a rubber exposed to a hydrogen environment need to be reviewed. In this review paper, the transportation, chemical and mechanical properties of a rubber exposed directly or indirectly to high temperature and high-pressure hydrogen in a H2-ICE have been reviewed. The compatibility of rubber materials used in H2-ICE has been explored. The effects of high-pressure hydrogen on the transportation, chemical and mechanical properties of NBR and HNBR have been reviewed.
X